No Arabic abstract
We report on a study of Seebeck coefficient and resistivity in the quasi-one-dimensional conductor (TMTSF)$_{2}$PF$_{6}$ extended deep into the Spin-Density-Wave(SDW) state. The metal-insulator transition at $T_{SDW}$ = 12 K leads to a reduction in carrier concentration by seven orders of magnitude. Below 1 K, charge transport displays the behavior known as Variable Range Hopping (VRH). Until now, the Seebeck response of electrons in this regime has been barely explored and even less understood. We find that in this system, residual carriers, hopping from one trap to another, generate a Seebeck coefficient as large as 400 $k_{B}$/$e$. The results provide the first solid evidence for a long-standing prediction according to which hopping electrons in presence of Coulomb interaction can generate a sizeable Seebeck coefficient in the zero-temperature limit.
We investigate the spin Seebeck coefficient $S_s$ in the square lattice Hubbard model at high temperatures of relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the dynamical mean-field theory methods and find they give similar results in the considered regime. $S_s$ exceeds the atomic Heikes estimates and the Kelvin entropic estimates drastically. We analyze the behavior in terms of a mapping onto the problem of a doped attractive model and derive an aproximate expression that allows relating the enhancement of $S_s$ to distinct scattering of the spin-majority and spin-minority excitations. Our analysis reveals the limitations of entropic interpretations of Seebeck coefficient even in the high-temperature regime. Large values of $S_s$ could be observed on optical lattices and might need to be taken into account to properly explain the measured values of spin diffusion.
We study the influence of inelastic electron-electron scattering on the temperature variation of the Seebeck coefficient in the normal phase of quasi-one-dimensional organic superconductors. The theory is based on the numerical solution of the semi-classical Boltzmann equation for which the collision integral equation is solved with the aid of the electronic umklapp scattering vertex calculated by the renormalization group method. We show that the one-loop renormalization group flow of momentum and temperature dependent umklapp scattering, in the presence of nesting alterations of the Fermi surface, introduce electron-hole asymmetry in the energy dependence of the anisotropic scattering time. This is responsible for the enhancement of the Seebeck coefficient with respect to the band $T$-linear prediction and even its sign reversal around the quantum critical point of the phase diagram, namely where the interplay between antiferromagnetism and superconductivity along with the strength of spin fluctuations are the strongest. Comparison of the results with available data on low dimensional organic superconductors is presented and critically discussed.
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)$_2$PF$_6$-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)$_2$PF$_6$-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 10$^2$ MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF$_6$ and AsF$_6$ salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {theta}$_E$ = 8.3 K and {theta}$_E$ = 6.7 K for the PF$_6$-D12 and AsF$_6$-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)$_2$PF$_6$ is dominated by the librational motion of the PF$_6$ units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {theta}$_E$ = 50 K and {theta}$_E$ = 76 K for the PF$_6$-D12 and PF$_6$-H12 salts, respectively.
We study the role of charge density-wave fluctuations on the temperature dependence of Seebeck coefficient in quasi-one dimensional conductors with a Peierls instability. The description of low-dimensional incommensurate charge density-wave fluctuations as obtained by a generalized Ginzburg-Landau approach for arrays of weakly coupled chains is embodied in the numerical solution of the semi-classical Boltzmann transport equation. The energy and temperature dependence of the scattering time of electrons on fluctuations can then be extracted and its influence on the Seebeck coefficient calculated. The connexion between theory and experiments carried out on molecular conductors is presented and critically discussed.
We have systematically measured the transport properties in the layered rhodium oxide K$_{x}$RhO$_{2}$ single crystals ($0.5lesssim x lesssim 0.67$), which is isostructural to the thermoelectric oxide Na$_{x}$CoO$_{2}$. We find that below $x = 0.64$ the Seebeck coefficient is anomalously enhanced at low temperatures with increasing $x$, while it is proportional to the temperature like a conventional metal above $x=0.65$, suggesting an existence of a critical content $x^{*} simeq 0.65$. For the origin of this anomalous behavior, we discuss a filling-induced Lifshitz transition, which is characterized by a sudden topological change in the cylindrical hole Fermi surfaces at the critical content $x^*$.