Do you want to publish a course? Click here

Transfer Printing of CVD Graphene FETs on Patterned Substrates

101   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 +- 340 Ohm-micrometer. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors.



rate research

Read More

Graphene is an emerging class of two-dimensional (2D) material with unique electrical properties and a wide range of potential practical applications. In addition, graphene hybrid structures combined with other 2D materials, metal microstructures, silicon photonic crystal cavities, and waveguides have more extensive applications in van der Waals heterostructures, hybrid graphene plasmonics, hybrid optoelectronic devices, and optical modulators. Based on well-developed transfer methods, graphene grown by chemical vapor deposition (CVD) is currently used in most of the graphene hybrid applications. Although mechanical exfoliation of highly oriented pyrolytic graphite provides the highest-quality graphene, the transfer of the desired microcleaving graphene (MG) to the structure at a specific position is a critical challenge, that limits the combination of MG with other structures. Herein, we report a new technique for the selective transfer of MG patterns and devices onto chosen targets using a bilayer-polymer structure and femtosecond laser microfabrication. This selective transfer technique, which exactly transfers the patterned graphene onto a chosen target, leaving the other flakes on the original substrate, provides an efficient route for the fabrication of MG-based microdevices. This method will facilitate the preparation of van der Waals heterostructures and enable the optimization of the performance of graphene hybrid devices.
166 - E. Pallecchi , C. Benz , A.C. Betz 2011
We have developed metal-oxide graphene field-effect transistors (MOGFETs) on sapphire substrates working at microwave frequencies. For monolayers, we obtain a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power gain maximum frequency of about ~ 3 GHz for this specific sample. Given the strongly reduced charge noise for nanostructures on sapphire, the high stability and high performance of this material at low temperature, our MOGFETs on sapphire are well suited for a cryogenic broadband low-noise amplifier.
Placing graphene on uniaxial substrates may have interesting application potential for graphene-based photonic and optoelectronic devices. Here we analytically derive the dispersion relation for graphene plasmons on uniaxial substrates and discuss their momentum, propagation length and polarization as a function of frequency, propagation direction and both ordinary and extraordinary dielectric permittivities of the substrate. We find that the plasmons exhibit an anisotropic propagation, yielding radially asymmetric field patterns when a point emitter launches plasmons in the graphene layer.
We study the percolation properties for a system of functionalized colloids on patterned substrates via Monte Carlo simulations. The colloidal particles are modeled as hard disks with three equally-distributed attractive patches on their perimeter. We describe the patterns on the substrate as circular potential wells of radius $R_p$ arranged in a regular square or hexagonal lattice. We find a nonmonotonic behavior of the percolation threshold (packing fraction) as a function of $R_p$. For attractive wells, the percolation threshold is higher than the one for clean (non-patterned) substrates if the circular wells are non-overlapping and can only be lower if the wells overlap. For repulsive wells we find the opposite behavior. In addition, at high packing fractions the formation of both structural and bond defects suppress percolation. As a result, the percolation diagram is reentrant with the non-percolated state occurring at very low and intermediate densities.
Allotropes of carbon, including one-dimensional carbon nanotubes and two-dimensional graphene sheets, continue to draw attention as promising platforms for probing the physics of electrons in lower dimensions. Recent research has shown that the electronic properties of graphene multilayers are exquisitely sensitive to the relative orientation between sheets, and in the bilayer case exhibit strong electronic correlations when close to a magic twist angle. Here, we investigate the electronic properties of a carbon nanotube deposited on a graphene sheet by deriving a low-energy theory that accounts both for rotations and rigid displacements of the nanotube with respect to the underlying graphene layer. We show that this heterostructure is described by a translationally invariant, a periodic or a quasi-periodic Hamiltonian, depending on the orientation and the chirality of the nanotube. Furthermore, we find that, even for a vanishing twist angle, rigid displacements of a nanotube with respect to a graphene substrate can alter its electronic structure qualitatively. Our results identify a promising new direction for strong correlation physics in low dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا