Do you want to publish a course? Click here

Orbital optical lattices with bosons

320   0   0.0 ( 0 )
 Added by Andreas Hemmerich
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalisation process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. In the 2nd and 7th band, the band geometry can be tuned such that two inequivalent energetically degenerate energy minima arise at the $X_{pm}$-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed in the $Gamma$-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.



rate research

Read More

167 - K.V. Krutitsky 2015
During the last decade, many exciting phenomena have been experimentally observed and theoretically predicted for ultracold atoms in optical lattices. This paper reviews these rapid developments concentrating mainly on the theory. Different types of the bosonic systems in homogeneous lattices of different dimensions as well as in the presence of harmonic traps are considered. An overview of the theoretical methods used for these investigations as well as of the obtained results is given. Available experimental techniques are presented and discussed in connection with theoretical considerations. Eigenstates of the interacting bosons in homogeneous lattices and in the presence of harmonic confinement are analysed. Their knowledge is essential for understanding of quantum phase transitions at zero and finite temperature.
We report on high-resolution optical spectroscopy of interacting bosonic $^{174}$Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow clock transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths.
351 - Geva Arwas , Doron Cohen 2018
We introduce a theory for the stability of a condensate in an optical lattice. We show that the understanding of the stability-to-ergodicity transition involves the fusion of monodromy and chaos theory. Specifically, the condensate can decay if a connected chaotic pathway to depletion is formed, which requires swap of seperatrices in phase-space.
We study the thermalization of excitations generated by spontaneous emission events for cold bosons in an optical lattice. Computing the dynamics described by the many-body master equation, we characterize equilibration timescales in different parameter regimes. For simple observables, we find regimes in which the system relaxes rapidly to values in agreement with a thermal distribution, and others where thermalization does not occur on typical experimental timescales. Because spontaneous emissions lead effectively to a local quantum quench, this behavior is strongly dependent on the low-energy spectrum of the Hamiltonian, and undergoes a qualitative change at the Mott Insulator-superfluid transition point. These results have important implications for the understanding of thermalization after localized quenches in isolated quantum gases, as well as the characterization of heating in experiments.
107 - Florian Lange , Satoshi Ejima , 2019
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic structure factor. The dynamic structure factor in the dimerized phase differs significantly between parameters near the SU(5)-symmetric point and those deeper in the phase where the dimerization is strong. In the former case, most of the spectral weight is concentrated in a single excitation line, while in the latter case, a broad excitation continuum shows up. For the trimerized phase, we find gapless excitations at momenta $k=pm2pi/3$ in agreement with previous results, although the visibility of these excitations in the dynamic spin response depends strongly on the specific parameters. We also consider parameters for specific atoms which may be relevant for future optical-lattice experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا