Do you want to publish a course? Click here

Multiplexing Free-Space Channels using Twisted Light

69   0   0.0 ( 0 )
 Added by Brandon Rodenburg
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate an interferometric protocol for multiplexing optical states of light, with potential to become a standard element in free-space communication schemes that utilize light endowed with orbital angular momentum (OAM). We demonstrate multiplexing for odd and even OAM superpositions generated using different sources. In addition, our technique permits one to prepare either coherent superpositions or statistical mixtures of OAM states. We employ state tomography to study the performance of this protocol, and we demonstrate fidelities greater than 0.98.



rate research

Read More

Many fundamental and applied experiments in quantum optics require transferring nonclassical states of light through large distances. In this context the free-space channels are a very promising alternative to optical fibers as they are mobile and enable to establish communications with moving objects, using satellites for global quantum links. For such channels the atmospheric turbulence is the main disturbing factor. The statistical properties of the fluctuating transmittance through the turbulent atmosphere are given by the probability distribution of transmittance (PDT). We derive the consistent PDTs for the atmospheric quantum channels by step-by-step inclusion of various atmospheric effects such as beam wandering, beam broadening and deformation of the beam into elliptic form, beam deformations into arbitrary forms. We discuss the applicability of PDT models for different propagation distances and optical turbulence strengths in the case when the receiver module has an annular aperture. We analyze the optimal detection and correction strategies which can improve the channel transmission characteristics. The obtained results are important for the design of optical experiments including postselection and adaptive strategies and for the security analysis of quantum communication protocols in free-space.
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance heralded single-photons generation by multiplexing the degree of the freedom of orbital angular momentum (OAM) of down-converted entangled photon pairs emitted from a nonlinear crystal. Experimentally, a proof-of-principle experiment has been performed through multiplexing three OAM modes. We achieve a 47$%$ enhancement in single photon rate. A second-order autocorrelation function $g^{(2)}(0)<0.5$ ensures our multiplexed heralded single photons with good single photon purity. We further indicate that an OAM-multiplexed HSPS with high quality can be constructed by generating higher dimensional entangled state and sorting them with high efficiency in OAM space. Our avenue may approach a good HSPS with the deterministic property.
Quantum key distributions (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field, allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a 7-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment shows that, in addition to having an increased information capacity, QKD systems based on spatial-mode encoding will be more tolerant to errors and thus more robust against eavesdropping attacks.
Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a post-selection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.
Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, based on exploiting the transverse modes of a single light beam as quantum degrees of freedom.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا