No Arabic abstract
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.
Scalar-tensor gravitational theories are important extensions of standard general relativity, which can explain both the initial inflationary evolution, as well as the late accelerating expansion of the Universe. In the present paper we investigate the cosmological solution of a scalar-tensor gravitational theory, in which the scalar field $phi $ couples to the geometry via an arbitrary function $F(phi $). The kinetic energy of the scalar field as well as its self-interaction potential $V(phi )$ are also included in the gravitational action. By using a standard mathematical procedure, the Lie group approach, and Noether symmetry techniques, we obtain several exact solutions of the gravitational field equations describing the time evolutions of a flat Friedman-Robertson-Walker Universe in the framework of the scalar-tensor gravity. The obtained solutions can describe both accelerating and decelerating phases during the cosmological expansion of the Universe.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We derive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
In this work we shall study the implications of a subclass of $E$-models cosmological attractors, namely of $a$-attractors, on hydrodynamically stable slowly rotating neutron stars. Specifically, we shall present the Jordan frame theory of the $a$-attractors, and by using a conformal transformation we shall derive the Einstein frame theory. We discuss the inflationary context of $a$-attractors in order to specify the allowed range of values for the free parameters of the model based on the latest cosmic-microwave-background-based Planck 2018 data. Accordingly, using the notation and physical units frequently used in theoretical astrophysics contexts, we shall derive the Tolman-Oppenheimer-Volkoff equations in the Einstein frame. Assuming a piecewise polytropic equation of state, the lowest density part of which shall be chosen to be the WFF1, or APR or the SLy EoS, we numerically solve the Tolman-Oppenheimer-Volkoff equations using a double shooting python-based LSODA numerical code. The resulting picture depends on the value of the parameter $a$ characterizing the $a$-attractors. As we show, for large values of $a$, which do not produce a viable inflationary era, the $M-R$ graphs are nearly identical to the general relativistic result, and these two are discriminated at large central densities values. Also, for large $a$-values, the WFF1 equation of state is excluded, due to the GW170817 constraints. In addition, the small $a$ cases produce larger masses and radii compared to the general relativistic case and are compatible with the GW170817 constraints on the radii of neutron stars. Our results indicate deep and not yet completely understood connections between non-minimal inflationary attractors and neutron stars phenomenology in scalar-tensor theory.