Do you want to publish a course? Click here

Linear-Time Fitting of a $k$-Step Function

70   0   0.0 ( 0 )
 Added by Tsunehiko Kameda
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Given a set of $n$ weighted points on the $x$-$y$ plane, we want to find a step function consisting of $k$ horizontal steps such that the maximum vertical weighted distance from any point to a step is minimized. We solve this problem in $O(n)$ time when $k$ is a constant. Our approach relies on the prune-and-search technique, and can be adapted to design similar linear time algorithms to solve the line-constrained k-center problem and the size-$k$ histogram construction problem as well.



rate research

Read More

A terrain is an $x$-monotone polygon whose lower boundary is a single line segment. We present an algorithm to find in a terrain a triangle of largest area in $O(n log n)$ time, where $n$ is the number of vertices defining the terrain. The best previous algorithm for this problem has a running time of $O(n^2)$.
Given n data points in R^d, an appropriate edge-weighted graph connecting the data points finds application in solving clustering, classification, and regresssion problems. The graph proposed by Daitch, Kelner and Spielman (ICML~2009) can be computed by quadratic programming and hence in polynomial time. While a more efficient algorithm would be preferable, replacing quadratic programming is challenging even for the special case of points in one dimension. We develop a dynamic programming algorithm for this case that runs in O(n^2) time.
101 - Luis Barba 2018
Let $P$ be a simple polygon with $n$ vertices. For any two points in $P$, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in $P$. Given a set $S$ of $m$ sites being a subset of the vertices of $P$, we present a randomized algorithm to compute the geodesic farthest-point Voronoi diagram of $S$ in $P$ running in expected $O(n + m)$ time. That is, a partition of $P$ into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic distance. In particular, this algorithm can be extended to run in expected $O(n + mlog m)$ time when $S$ is an arbitrary set of $m$ sites contained in $P$, thereby solving the open problem posed by Mitchell in Chapter 27 of the Handbook of Computational Geometry.
175 - Tamal K. Dey , Tao Hou 2021
Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one instrument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general $O(m^omega)$ time complexity are not known, where $omega< 2.37286$ is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with $m$ additions and deletions on a graph with $n$ vertices and edges, the algorithm for $0$-dimension runs in $O(mlog^2 n+mlog m)$ time and the algorithm for 1-dimension runs in $O(mlog^4 n)$ time. The algorithm for $0$-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on $2$-manifolds. The algorithm for $1$-dimension pairs a negative edge with the earliest positive edge so that a $1$-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for $0$-dimension to compute the $(p-1)$-dimensional zigzag persistence for $mathbb{R}^p$-embedded complexes in $O(mlog^2 n+mlog m+nlog n)$ time.
In this article, we study shape fitting problems, $epsilon$-coresets, and total sensitivity. We focus on the $(j,k)$-projective clustering problems, including $k$-median/$k$-means, $k$-line clustering, $j$-subspace approximation, and the integer $(j,k)$-projective clustering problem. We derive upper bounds of total sensitivities for these problems, and obtain $epsilon$-coresets using these upper bounds. Using a dimension-reduction type argument, we are able to greatly simplify earlier results on total sensitivity for the $k$-median/$k$-means clustering problems, and obtain positively-weighted $epsilon$-coresets for several variants of the $(j,k)$-projective clustering problem. We also extend an earlier result on $epsilon$-coresets for the integer $(j,k)$-projective clustering problem in fixed dimension to the case of high dimension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا