No Arabic abstract
CSS codes are in one-to-one correspondance with length 3 chain complexes. The latter are naturally endowed with a tensor product $otimes$ which induces a similar operation on the former. We investigate this operation, and in particular its behavior with regard to minimum distances. Given a CSS code $mathcal{C}$, we give a criterion which provides a lower bound on the minimum distance of $mathcal{C} otimes mathcal{D}$ for every CSS code $mathcal D$. We apply this result to study the behaviour of iterated tensor powers of codes. Such sequences of codes are logarithmically LDPC and we prove in particular that their minimum distances tend generically to infinity. Different known results are reinterpretated in terms of tensor products. Three new families of CSS codes are defined, and their iterated tensor powers produce LDPC sequences of codes with length $n$, row weight in $O(log n)$ and minimum distances larger than $n^{frac{alpha}{2}}$ for any $alpha<1$. One family produces sequences with dimensions larger than $n^beta$ for any $beta<1$.
We consider $q$-ary (linear and nonlinear) block codes with exactly two distances: $d$ and $d+delta$. Several combinatorial constructions of optimal such codes are given. In the linear (but not necessary projective) case, we prove that under certain conditions the existence of such linear $2$-weight code with $delta > 1$ implies the following equality of great common divisors: $(d,q) = (delta,q)$. Upper bounds for the maximum cardinality of such codes are derived by linear programming and from few-distance spherical codes. Tables of lower and upper bounds for small $q = 2,3,4$ and $q,n < 50$ are presented.
We determine the proportion of $[3times 3;3]$-MRD codes over ${mathbb F}_q$ within the space of all $3$-dimensional $3times3$-rank-metric codes over the same field. This shows that for these parameters MRD codes are sparse in the sense that the proportion tends to $0$ as $qrightarrowinfty$. This is so far the only parameter case for which MRD codes are known to be sparse. The computation is accomplished by reducing the space of all such rank-metric codes to a space of specific bases and subsequently making use of a result by Menichetti (1973) on 3-dimensional semifields.
In order to perform universal fault-tolerant quantum computation, one needs to implement a logical non-Clifford gate. Consequently, it is important to understand codes that implement such gates transversally. In this paper, we adopt an algebraic approach to characterize all stabilizer codes for which transversal $T$ and $T^{-1}$ gates preserve the codespace. Our Heisenberg perspective reduces this to a finite geometry problem that translates to the design of certain classical codes. We prove three corollaries: (a) For any non-degenerate $[[ n,k,d ]]$ stabilizer code supporting a physical transversal $T$, there exists an $[[ n,k,d ]]$ CSS code with the same property; (b) Triorthogonal codes are the most general CSS codes that realize logical transversal $T$ via physical transversal $T$; (c) Triorthogonality is necessary for physical transversal $T$ on a CSS code to realize the logical identity. The main tool we use is a recent efficient characterization of certain diagonal gates in the Clifford hierarchy (arXiv:1902.04022). We refer to these gates as Quadratic Form Diagonal (QFD) gates. Our framework generalizes all existing code constructions that realize logical gates via transversal $T$. We provide several examples and briefly discuss connections to decreasing monomial codes, pin codes, generalized triorthogonality and quasitransversality. We partially extend these results towards characterizing all stabilizer codes that support transversal $pi/2^{ell}$ $Z$-rotations. In particular, using Axs theorem on residue weights of polynomials, we provide an alternate characterization of logical gates induced by transversal $pi/2^{ell}$ $Z$-rotations on a family of quantum Reed-Muller codes. We also briefly discuss a general approach to analyze QFD gates that might lead to a characterization of all stabilizer codes that support any given physical transversal $1$- or $2$-local diagonal gate.
Maximum distance separable (MDS) codes are very important in both theory and practice. There is a classical construction of a family of $[2^m+1, 2u-1, 2^m-2u+3]$ MDS codes for $1 leq u leq 2^{m-1}$, which are cyclic, reversible and BCH codes over $mathrm{GF}(2^m)$. The objective of this paper is to study the quaternary subfield subcodes and quaternary subfield codes of a subfamily of the MDS codes for even $m$. A family of quaternary cyclic codes is obtained. These quaternary codes are distance-optimal in some cases and very good in general. Furthermore, infinite families of $3$-designs from these quaternary codes are presented.
This paper is concerned with the affine-invariant ternary codes which are defined by Hermitian functions. We compute the incidence matrices of 2-designs that are supported by the minimum weight codewords of these ternary codes. The linear codes generated by the rows of these incidence matrix are subcodes of the extended codes of the 4-th order generalized Reed-Muller codes and they also hold 2-designs. Finally, we give the dimensions and lower bound of the minimum weights of these linear codes.