Do you want to publish a course? Click here

Linear Codes Of 2-Designs As Subcodes Of The Extended Generalized Reed-Muller Codes

99   0   0.0 ( 0 )
 Added by Jiejing Wen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper is concerned with the affine-invariant ternary codes which are defined by Hermitian functions. We compute the incidence matrices of 2-designs that are supported by the minimum weight codewords of these ternary codes. The linear codes generated by the rows of these incidence matrix are subcodes of the extended codes of the 4-th order generalized Reed-Muller codes and they also hold 2-designs. Finally, we give the dimensions and lower bound of the minimum weights of these linear codes.



rate research

Read More

The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Math. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new families of quaternary Reed-Muller codes are built with the peculiarity that after using the Gray map the obtained Z4-linear codes have the same parameters and fundamental properties as the codes in the usual binary linear Reed-Muller family. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.
Reed-Muller (RM) codes are among the oldest, simplest and perhaps most ubiquitous family of codes. They are used in many areas of coding theory in both electrical engineering and computer science. Yet, many of their important properties are still under investigation. This paper covers some of the recent developments regarding the weight enumerator and the capacity-achieving properties of RM codes, as well as some of the algorithmic developments. In particular, the paper discusses the recent connections established between RM codes, thresholds of Boolean functions, polarization theory, hypercontractivity, and the techniques of approximating low weight codewords using lower degree polynomials. It then overviews some of the algorithms with performance guarantees, as well as some of the algorithms with state-of-the-art performances in practical regimes. Finally, the paper concludes with a few open problems.
Maximum distance separable (MDS) codes are very important in both theory and practice. There is a classical construction of a family of $[2^m+1, 2u-1, 2^m-2u+3]$ MDS codes for $1 leq u leq 2^{m-1}$, which are cyclic, reversible and BCH codes over $mathrm{GF}(2^m)$. The objective of this paper is to study the quaternary subfield subcodes and quaternary subfield codes of a subfamily of the MDS codes for even $m$. A family of quaternary cyclic codes is obtained. These quaternary codes are distance-optimal in some cases and very good in general. Furthermore, infinite families of $3$-designs from these quaternary codes are presented.
135 - J. Pujol , J. Rif`a , L. Ronquillo 2009
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of Z2Z4-additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes. Moreover, the first family is the usual binary linear Reed-Muller family.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا