Do you want to publish a course? Click here

Global Well-Posedness of 2D Non-Focusing Schrodinger Equations via Rigorous Modulation Approximation

199   0   0.0 ( 0 )
 Added by Nathan Totz
 Publication date 2015
  fields
and research's language is English
 Authors Nathan Totz




Ask ChatGPT about the research

We consider the long time well-posedness of the Cauchy problem with large Sobolev data for a class of nonlinear Schrodinger equations (NLS) on $mathbb{R}^2$ with power nonlinearities of arbitrary odd degree. Specifically, the method in this paper applies to those NLS equations having either elliptic signature with a defocusing nonlinearity, or else having an indefinite signature. By rigorously justifying that these equations govern the modulation of wave packet-like solutions to an artificially constructed equation with an advantageous structure, we show that a priori every subcritical inhomogeneous Sobolev norm of the solution increases at most polynomially in time. Global well-posedness follows by a standard application of the subcritical local theory.



rate research

Read More

146 - Chengchun Hao 2008
In this paper, we investigate the one-dimensional derivative nonlinear Schrodinger equations of the form $iu_t-u_{xx}+ilambdaabs{u}^k u_x=0$ with non-zero $lambdain Real$ and any real number $kgs 5$. We establish the local well-posedness of the Cauchy problem with any initial data in $H^{1/2}$ by using the gauge transformation and the Littlewood-Paley decomposition.
187 - Baoxiang Wang 2008
We study the Cauchy problem for the generalized elliptic and non-elliptic derivative nonlinear Schrodinger equations, the existence of the scattering operators and the global well posedness of solutions with small data in Besov spaces and in modulation spaces are obtained. In one spatial dimension, we get the sharp well posedness result with small data in critical homogeneous Besov spaces. As a by-product, the existence of the scattering operators with small data is also shown. In order to show these results, the glob
81 - Jinkai Li 2019
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The initial density is required to be nonnegative, which is not necessary to be uniformly away from vacuum. This not only generalizes the well-known result of Kazhikhov--Shelukhin (Kazhikhov, A.~V.; Shelukhin, V.~V.: emph{Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas}, J.,Appl.,Math.,Mech., bf41 rm(1977), 273--282.) from the heat conductive case to the non-heat conductive case, and the initial vacuum is allowed.
313 - Tadahiro Oh , Yuzhao Wang 2018
We study well-posedness of the complex-valued modified KdV equation (mKdV) on the real line. In particular, we prove local well-posedness of mKdV in modulation spaces $M^{2,p}_{s}(mathbb{R})$ for $s ge frac14$ and $2leq p < infty$. For $s < frac 14$, we show that the solution map for mKdV is not locally uniformly continuous in $M^{2,p}_{s}(mathbb{R})$. By combining this local well-posedness with our previous work (2018) on an a priori global-in-time bound for mKdV in modulation spaces, we also establish global well-posedness of mKdV in $M^{2,p}_{s}(mathbb{R})$ for $s ge frac14$ and $2leq p < infty$.
The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. These integrations play an important role to setting the subsequent fixed point argument. The existence of solutions for less regular data is discussed, and several examples and applications are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا