Do you want to publish a course? Click here

Influence Prediction for Continuous-Time Information Propagation on Networks

190   0   0.0 ( 0 )
 Added by Xiaojing Ye
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We consider the problem of predicting the time evolution of influence, the expected number of activated nodes, given a set of initially active nodes on a propagation network. To address the significant computational challenges of this problem on large-scale heterogeneous networks, we establish a system of differential equations governing the dynamics of probability mass functions on the state graph where the nodes each lumps a number of activation states of the network, which can be considered as an analogue to the Fokker-Planck equation in continuous space. We provides several methods to estimate the system parameters which depend on the identities of the initially active nodes, network topology, and activation rates etc. The influence is then estimated by the solution of such a system of differential equations. This approach gives rise to a class of novel and scalable algorithms that work effectively for large-scale and dense networks. Numerical results are provided to show the very promising performance in terms of prediction accuracy and computational efficiency of this approach.



rate research

Read More

We propose a novel problem formulation of continuous-time information propagation on heterogenous networks based on jump stochastic differential equations (SDE). The structure of the network and activation rates between nodes are naturally taken into account in the SDE system. This new formulation allows for efficient and stable algorithm for many challenging information propagation problems, including estimations of individual activation probability and influence level, by solving the SDE numerically. To this end, we develop an efficient numerical algorithm incorporating variance reduction; furthermore, we provide theoretical bounds for its sample complexity. Moreover, we show that the proposed jump SDE approach can be applied to a much larger class of critical information propagation problems with more complicated settings. Numerical experiments on a variety of synthetic and real-world propagation networks show that the proposed method is more accurate and efficient compared with the state-of-the-art methods.
Social media sites are information marketplaces, where users produce and consume a wide variety of information and ideas. In these sites, users typically choose their information sources, which in turn determine what specific information they receive, how much information they receive and how quickly this information is shown to them. In this context, a natural question that arises is how efficient are social media users at selecting their information sources. In this work, we propose a computational framework to quantify users efficiency at selecting information sources. Our framework is based on the assumption that the goal of users is to acquire a set of unique pieces of information. To quantify users efficiency, we ask if the user could have acquired the same pieces of information from another set of sources more efficiently. We define three different notions of efficiency -- link, in-flow, and delay -- corresponding to the number of sources the user follows, the amount of (redundant) information she acquires and the delay with which she receives the information. Our definitions of efficiency are general and applicable to any social media system with an underlying information network, in which every user follows others to receive the information they produce. In our experiments, we measure the efficiency of Twitter users at acquiring different types of information. We find that Twitter users exhibit sub-optimal efficiency across the three notions of efficiency, although they tend to be more efficient at acquiring non-popular than popular pieces of information. We then show that this lack of efficiency is a consequence of the triadic closure mechanism by which users typically discover and follow other users in social media. Finally, we develop a heuristic algorithm that enables users to be significantly more efficient at acquiring the same unique pieces of information.
Social networks readily transmit information, albeit with less than perfect fidelity. We present a large-scale measurement of this imperfect information copying mechanism by examining the dissemination and evolution of thousands of memes, collectively replicated hundreds of millions of times in the online social network Facebook. The information undergoes an evolutionary process that exhibits several regularities. A memes mutation rate characterizes the population distribution of its variants, in accordance with the Yule process. Variants further apart in the diffusion cascade have greater edit distance, as would be expected in an iterative, imperfect replication process. Some text sequences can confer a replicative advantage; these sequences are abundant and transfer laterally between different memes. Subpopulations of the social network can preferentially transmit a specific variant of a meme if the variant matches their beliefs or culture. Understanding the mechanism driving change in diffusing information has important implications for how we interpret and harness the information that reaches us through our social networks.
Social networks play a fundamental role in the diffusion of information. However, there are two different ways of how information reaches a person in a network. Information reaches us through connections in our social networks, as well as through the influence of external out-of-network sources, like the mainstream media. While most present models of information adoption in networks assume information only passes from a node to node via the edges of the underlying network, the recent availability of massive online social media data allows us to study this process in more detail. We present a model in which information can reach a node via the links of the social network or through the influence of external sources. We then develop an efficient model parameter fitting technique and apply the model to the emergence of URL mentions in the Twitter network. Using a complete one month trace of Twitter we study how information reaches the nodes of the network. We quantify the external influences over time and describe how these influences affect the information adoption. We discover that the information tends to jump across the network, which can only be explained as an effect of an unobservable external influence on the network. We find that only about 71% of the information volume in Twitter can be attributed to network diffusion, and the remaining 29% is due to external events and factors outside the network.
Characterizing large online social networks (OSNs) through node querying is a challenging task. OSNs often impose severe constraints on the query rate, hence limiting the sample size to a small fraction of the total network. Various ad-hoc subgraph sampling methods have been proposed, but many of them give biased estimates and no theoretical basis on the accuracy. In this work, we focus on developing sampling methods for OSNs where querying a node also reveals partial structural information about its neighbors. Our methods are optimized for NoSQL graph databases (if the database can be accessed directly), or utilize Web API available on most major OSNs for graph sampling. We show that our sampling method has provable convergence guarantees on being an unbiased estimator, and it is more accurate than current state-of-the-art methods. We characterize metrics such as node label density estimation and edge label density estimation, two of the most fundamental network characteristics from which other network characteristics can be derived. We evaluate our methods on-the-fly over several live networks using their native APIs. Our simulation studies over a variety of offline datasets show that by including neighborhood information, our method drastically (4-fold) reduces the number of samples required to achieve the same estimation accuracy of state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا