Do you want to publish a course? Click here

Spatial frequencies associated with the latitudinal structures of ionospheric currents seen by CHAMP satellite

50   0   0.0 ( 0 )
 Added by Geeta Vichare
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The CHAMP magnetic field variations during international quiet days of low solar activity period 2008-2009 are investigated. The present paper reports the existence of frequency-peaks < 20 mHz in the compressional component of the magnetic field in almost all CHAMP passes. The magnetic field variations associated with these frequencies have amplitude of a few tens of nT during daytime. The geomagnetic activity and interplanetary magnetic field parameters were observed to be low during the period of study. The spectral powers of the observed frequencies show no dependence on solar wind velocity and cone angle; hence the reported frequencies are not related to the geomagnetic pulsations. For frequency-peaks <15 mHz, strong local-time dependence is observed with maximum power near noon and minimum at night. The longitudinal and seasonal variations of the powers of these frequency-peaks match well with those of the equator-to-middle latitude ionospheric currents derived by the earlier studies. As a polar Low-Earth-Orbiting (LEO) satellite spans the entire range of latitudes within few minutes, it monitors the geomagnetic field variations caused by the quiet-time ionospheric currents flowing at different latitudes. This can result in certain frequencies in the magnetic field recorded by LEO satellites. We demonstrate that the frequencies <10mHz are mainly due to the latitudinal structure of the equatorial electrojet. The observed frequencies in CHAMP data are therefore attributed to the latitudinal structures of the ionospheric currents that are monitored only by the polar LEO satellites and are found to alter the observations of geomagnetic pulsations (Pc4-5 and Pi2) significantly.



rate research

Read More

A range of nonlinear wave structures, including Langmuir waves, unipolar electric fields and bipolar electric fields, are often observed in association with whistler-mode chorus waves in the near-Earth space. We demonstrate that the three seemingly different nonlinear wave structures originate from the same nonlinear electron trapping process by whistler-mode chorus waves. The ratio of the Landau resonant velocity to the electron thermal velocity controls the type of nonlinear wave structures that will be generated.
This paper presents a case study from a single, six-hour observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal to noise (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the GPS data when combining all available satellite/receiver pairs, which probe a larger physical area and likely have a wider variety of measurement errors than in the single-satellite case. In this instance, we found the peak S/N of the detected waves was improved by more than an order of magnitude. The data products generated by the deconvolution procedure also allow for a reconstruction of the fluctuations as a two-dimensional waveform/phase screen that can be used to correct for their effects.
We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, can observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.
In this study, with cross-valid analysis of total electron content (TEC) data of the global ionospheric map (GIM) from GPS and plasma parameters data recorded by China Seismo-Electromagnetic Satellite (CSES), signatures of seismic-ionospheric perturbations related to the 14 July 2019 Mw7.2 Laiwui earthquake were detected. After distinguishing the solar and geomagnetic activities, three positive temporal anomalies were found around the epicenter 1 day, 3 days and 8 days before the earthquake (14 July 2019) along with a negative anomaly 6 days after the earthquake, which also agrees well with the TEC spatial variations in latitude-longitude-time (LLT) maps. To further confirm the anomalies, the ionospheric plasma parameters (electron, O+and He+densities) recorded by the Langmuir probe (LAP) and Plasma Analyzer Package (PAP) onboard CSES were analyzed by using the moving mean method (MMM), which also presented remarkable enhancements along the orbits around the epicenter on day 2, day 4 and day 7 before the earthquake. To make the investigations more convincing, the disturbed orbits were compared with their corresponding four nearest revisiting orbits, whose results indeed indicate the existence of plasma parameters anomalies associated with the Laiwui earthquake. All these results illustrated that the GPS and CSES observed unusual ionospheric perturbations are highly associated with the Mw 7.2 Laiwui earthquake, which also strongly indicates the existence of pre-seismic ionospheric anomalies over the earthquake region
We use the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study fields and density fluctuations in the solar wind observed by Solar Orbiter during the first perihelion encounter ($sim$0.5~AU away from the Sun). In particular we use the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence. We find that the density fluctuations are out-of-phase with the compressible component of magnetic fluctuations for intervals of turbulence, while they are in phase for the circular-polarized waves around the proton cyclotron frequency. We analyze in detail two specific events with simultaneous presence of left- and right-handed waves at different frequencies. We compare observed wave properties to a prediction of the three-fluid (electrons, protons and alphas) model. We find a limit on the observed wavenumbers, $10^{-6} < k < 7 times 10^{-6}$~m$^{-1}$, which corresponds to wavelength $7 times 10^6 >lambda > 10^6$~m. We conclude that most likely both the left- and right-handed waves correspond to the low-wavenumber part (close to the cut-off at $Omega_{cmathrm{He}++}$) proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range $Omega_{cmathrm{He}++} < omega < Omega_{cmathrm{H}+}$) waves propagating in the outwards and inwards directions respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا