No Arabic abstract
We study dislocation networks in the plane using the vectorial phase-field model introduced by Ortiz and coworkers, in the limit of small lattice spacing. We show that, in a scaling regime where the total length of the dislocations is large, the phase field model reduces to a simpler model of the strain-gradient type. The limiting model contains a term describing the three-dimensional elastic energy and a strain-gradient term describing the energy of the geometrically necessary dislocations, characterized by the tangential gradient of the slip. The energy density appearing in the strain-gradient term is determined by the solution of a cell problem, which depends on the line tension energy of dislocations. In the case of cubic crystals with isotropic elasticity our model shows that complex microstructures may form, in which dislocations with different Burgers vector and orientation react with each other to reduce the total self energy.
We study microstructure formation in two nonconvex singularly-perturbed variational problems from materials science, one modeling austenite-martensite interfaces in shape-memory alloys, the other one slip structures in the plastic deformation of crystals. For both functionals we determine the scaling of the optimal energy in terms of the parameters of the problem, leading to a characterization of the mesoscopic phase diagram. Our results identify the presence of a new phase, which is intermediate between the classical laminar microstructures and branching patterns. The new phase, characterized by partial branching, appears for both problems in the limit of small volume fraction, that is, if one of the variants (or of the slip systems) dominates the picture and the volume fraction of the other one is small.
This contribution deals with a class of models combining isotropic damage with plasticity. We are inspired by It has been inspired by a work by Freddi and Royer-Carfagni, including the case where the inelastic part of the strain only evolves in regions where the material is damaged. The evolution both of the damage and of the plastic variable is assumed to be rate-independent. Existence of solutions is established in the abstract energetic framework elaborated by Mielke and coworkers.
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.
By means of atomistic simulations, we demonstrate that a dislocation core exhibits intermittent quasistatic restructuring during incremental shear within the same Peierls valley. This can be regarded as a stick-slip transition, which is also reproduced for a one-dimensional Frenkel-Kontorova chain under rigid boundary conditions. This occurs due to a discontinuous jump in an order parameter of the system, which signifies the extent of region forbidden for the presence of particles in the chain. The stick-slip phenomenon observed in the dislocation core is also shown to be reflected after dimensionality reduction of the multidimensional atomic coordinates, which provides a basis for comparison with the simple one-dimensional chain.
Despite decades of extensive research on mechanical properties of diamond, much remains to be understood in term of plastic deformation mechanisms due to the poor deformability at room temperature. In a recent work in Advanced Materials, it was claimed that room-temperature plasticity occurred in <001>-oriented single-crystal diamond nanopillars based on observation of unrecovered deformation inside scanning electron microscope. The plastic deformation was suggested to be mediated by a phase transition from sp3 carbon to an O8-carbon phase by molecular dynamics simulations. By comparison, our in-situ transmission electron microscopy study reveals that the room-temperature plasticity can be carried out by dislocation slip in both <100> and <111>-oriented diamond nanopillars. The brittle-to-ductile transition is highly dependent on the stress state. We note that the surface structure may play a significant role in the deformation mechanisms as the incipient plasticity always occurs from the surface region in nanoscale diamonds.