Do you want to publish a course? Click here

On the adiabatic preparation of spatially-ordered Rydberg excitations of atoms in a one-dimensional optical lattice by laser frequency sweeps

113   0   0.0 ( 0 )
 Added by David Petrosyan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the adiabatic preparation of crystalline phases of Rydberg excitations in a one-dimensional lattice gas by frequency sweep of the excitation laser, as proposed by Pohl et al. [Phys. Rev. Lett. 104, 043002 (2010)] and recently realized experimentally by Schau{ss} et al. [Science 347, 1455 (2015)]. We find that the preparation of crystals of a few Rydberg excitations in a unitary system of several tens of atoms requires exceedingly long times for the adiabatic following of the ground state of the system Hamiltonian. Using quantum stochastic (Monte-Carlo) wavefunction simulations, we show that realistic decay and dephasing processes affecting the atoms during the preparation lead to a final state of the system that has only a small overlap with the target crystalline state. Yet, the final number and highly sub-Poissonian statistics of Rydberg excitations and their spatial order are little affected by the relaxations.



rate research

Read More

Coherent transport by adiabatic passage has recently been suggested as a high-fidelity technique to engineer the centre-of-mass state of single atoms in inhomogenous environments. While the basic theory behind this process is well understood, several conceptual challenges for its experimental observation have still to be addressed. One of these is the difficulty that currently available optical or magnetic micro-trap systems have in adjusting the tunneling rate time-dependently while keeping resonance between the asymptotic trapping states at all times. Here we suggest that both requirements can be fulfilled to a very high degree in an experimentally realistic setup based on radio frequency traps on atom chips. We show that operations with close to 100% fidelity can be achieved and that these systems also allow significant improvements for performing adiabatic passage with interacting atomic clouds.
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and superradiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide including the emergence of narrow Fano resonances can be understood by the resonance features of the eigenmodes. We describe a method based on superradiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.
We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an elementary system of two spins, tuning it from a non-resonant to a resonant regime, where bright (superradiant) and dark (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state. We then show that after preparing an initial single spin excitation and letting it hop due to the spin-exchange interaction, we can freeze the dynamics at will with the addressing laser, while preserving the coherence of the system. In the context of quantum simulation, this scheme opens exciting prospects for engineering inhomogeneous XY spin Hamiltonians or preparing spin-imbalanced initial states.
139 - E. Vetsch , D. Reitz , G. Sague 2009
Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.
We experimentally realize Rydberg excitations in Bose-Einstein condensates of rubidium atoms loaded into quasi one-dimensional traps and in optical lattices. Our results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations. We also find that the Rydberg excitations in the optical lattice do not destroy the phase coherence of the condensate, and our results in that system agree with the picture of localized collective Rydberg excitations including nearest-neighbour blockade.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا