Do you want to publish a course? Click here

Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

148   0   0.0 ( 0 )
 Added by Eugen Vetsch
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.



rate research

Read More

We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $sim$,1,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.
We report the measurement of collision rate coefficient for collisions between ultracold Cs atoms and low energy Cs+ ions. The experiments are performed in a hybrid trap consisting of a magneto-optical trap (MOT) for Cs atoms and a Paul trap for Cs+ ions. The ion-atom collisions impart kinetic energy to the ultracold Cs atoms resulting in their escape from the shallow MOT and, therefore, in a reduction in the number of Cs atoms in the MOT. By monitoring, using fluorescence measurements, the Cs atom number and the MOT loading dynamics and then fitting the data to a rate equation model, the ion-atom collision rate is derived. The Cs-Cs+ collision rate coefficient $9.3(pm0.4)(pm1.2)(pm3.5) times 10^{-14}$ m$^{3}$s$^{-1}$, measured for an ion distribution with most probable collision energy of 95 meV ($approx k_{B}.1100$ K), is in fair agreement with theoretical calculations. As an intermediate step, we also determine the photoionization cross section of Cs $6P_{3/2}$ atoms at 473 nm wavelength to be $2.28 (pm 0.33) times 10^{-21}$ m$^{2}$.
145 - T. Hennessy , Th. Busch 2014
Optical detection of structures with dimensions smaller than an optical wavelength requires devices that work on scales beyond the diffraction limit. Here we present the possibility of using a tapered optical nanofiber as a detector to resolve individual atoms trapped in an optical lattice in the Mott Insulator phase. We show that the small size of the fiber combined with an enhanced photon collection rate can allow for the attainment of large and reliable measurement signals.
There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work opens a new frontier for the subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.
We study the peformances of Raman velocimetry applied to laser-cooled, spin-polarized, cesium atoms. Atoms are optically pumped into the F=4, m=0 ground-state Zeeman sublevel, which is insensitive to magnetic perturbations. High resolution Raman stimulated spectroscopy is shown to produce Fourier-limited lines, allowing, in realistic experimental conditions, atomic velocity selection to one-fiftieth of a recoil velocity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا