Do you want to publish a course? Click here

Granular rotor as a probe for a non-equilibrium bath

162   0   0.0 ( 0 )
 Added by Tomohiko Sano
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

This study numerically and analytically investigates the dynamics of a rotor under viscous or dry friction as a non-equilibrium probe of a granular gas. In order to demonstrate the role of the rotor as a probe for a non-equilibrium bath, the molecular dynamics (MD) simulation of the rotor is performed under viscous or dry friction surrounded by a steady granular gas under gravity. A one- to-one map between the velocity distribution function (VDF) of the granular gas and the angular distribution function for the rotor is theoretically derived. The MD simulation demonstrates that the one-to-one map accurately infers the local VDF of the granular gas from the angular VDF of the rotor, and vice versa.



rate research

Read More

We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose surfaces break the rotation-inversion symmetry through alternated patches of different inelasticity, immersed in a gas of granular particles. The main novelty of our experimental setup is in the orientation of the main axis, which is parallel to the (vertical) direction of shaking of the granular fluid, guaranteeing an isotropic distribution for the velocities of colliding grains, characterized by a variance $v_0^2$. We also keep the granular system diluted, in order to compare with Boltzmann-equation-based kinetic theory. In agreement with theory, we observe for the first time the crucial role of Coulomb friction which induces two main regimes: (i) rare collisions (RC), with an average drift $ < omega > sim v_0^3$, and (ii) frequent collisions (FC), with $ < omega > sim v_0$. We also study the fluctuations of the angle spanned in a large time interval, $Delta theta$, which in the FC regime is proportional to the work done upon the motor. We observe that the Fluctuation Relation is satisfied with a slope which weakly depends on the relative collision frequency.
116 - James W. Dufty 2009
The response of an isolated granular fluid to small perturbations of the hydrodynamic fields is considered. The corresponding linear response functions are identified in terms of a formal solution to the Liouville equation including the effects of the cooling reference state. These functions are evaluated exactly in the asymptotic long wavelength limit and shown to represent hydrodynamic modes. More generally, the linear granular Navier-Stokes equations for the response functions and related Langevin equations are obtained from an extension of Moris identity. The resulting Green-Kubo expressions for transport coefficients are compared and contrasted with those for a molecular fluid. Next the response functions are described in terms of an effective dynamics in the single particle phase space. A closed linear kinetic equation is obtained formally in terms of a linear two particle functional. This closure is evaluated for two examples: a short time Markovian approximation, and a low density expansion on length and time scales of the mean free time and mean free path. The former is a generalization of the revised Enskog kinetic theory to include velocity correlations. The latter is an extension of the Boltzmann equation to include the effects of recollisions (rings) among the particles.
132 - James W. Dufty 2007
Newton viscosity law for the momentum flux and Fouriers law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newtons viscosity law. However, theory predicts a qualitative difference for Fouriers law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.
211 - F. Cornu 2008
We study the stationary state of a rough granular sphere immersed in a thermal bath composed of point particles. When the center of mass of the sphere is fixed the stationary angular velocity distribution is shown to be Gaussian with an effective temperature lower than that of the bath. For a freely moving rough sphere coupled to the thermostat via inelastic collisions we find a condition under which the joint distribution of the translational and rotational velocities is a product of Gaussian distributions with the same effective temperature. In this rather unexpected case we derive a formula for the stationary energy flow from the thermostat to the sphere in accordance with Fourier law.
124 - James W. Dufty 2007
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant differences observed in real granular fluids are indeed captured by this feature. Following a brief introductory description of real granular fluids and motivation for the idealized model, the elements of nonequilibrium statistical mechanics are recalled (observables, states, and their dynamics). Peculiarities of the hard sphere interactions are developed in detail. The exact microscopic balance equations for the number, energy, and momentum densities are derived and their averages described as the origin for a possible macroscopic continuum mechanics description. This formally exact analysis leads to closed, macroscopic hydrodynamic equations through the notion of a normal state. This concept is introduced and the Navier-Stokes constitutive equations are derived, with associated Green-Kubo expressions for the transport coefficients. A parallel description of granular gases is described in the context of kinetic theory, and the Boltzmann limit is identified critically. The construction of the normal solution to the kinetic equation is outlined, and Navier-Stokes order hydrodynamic equations are re-derived for a low density granular gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا