Do you want to publish a course? Click here

Comments concerning the Ising model and two letters by N.H. March

122   0   0.0 ( 0 )
 Added by Jacques H.H. Perk
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two recent articles by Norman H. March that contain misleading statements concerning 3D Ising models, partly based on earlier erroneous work of Z.D. Zhang, are addressed.



rate research

Read More

Based on the results published recently [SciPost Phys. 7, 026 (2019)], the influence of surfaces and boundary fields are calculated for the ferromagnetic anisotropic square lattice Ising model on finite lattices as well as in the finite-size scaling limit. Starting with the open cylinder, we independently apply boundary fields on both sides which can be either homogeneous or staggered, representing different combinations of boundary conditions. We confirm several predictions from scaling theory, conformal field theory and renormalisation group theory: we explicitly show that anisotropic couplings enter the scaling functions through a generalised aspect ratio, and demonstrate that open and staggered boundary conditions are asymptotically equal in the scaling regime. Furthermore, we examine the emergence of the surface tension due to one antiperiodic boundary in the system in the presence of symmetry breaking boundary fields, again for finite systems as well as in the scaling limit. Finally, we extend our results to the antiferromagnetic Ising model.
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function $Z$ on an $Ltimes M$ square lattice, wrapped around a torus with aspect ratio $rho=L/M$. By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a $2times2$ transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films $rhoto 0$. Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.
319 - Marco Picco 2012
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the results close to the change of regime from intermediate to short range do not agree with the renormalization group predictions.
196 - P. Grinza , A. Rago 2002
A numerical study of finite temperature features of thermodynamical observables is performed for the lattice 2d Ising model. Our results support the conjecture that the Finite Size Scaling analysis employed in the study of integrable perturbation of Conformal Field Theory is still valid in the present case, where a non-integrable perturbation is considered.
We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا