Do you want to publish a course? Click here

Stability conditions for Gelfand-Kirillov subquotients of category O

86   0   0.0 ( 0 )
 Added by Vinoth Nandakumar
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Recently, Anno, Bezrukavnikov and Mirkovic have introduced the notion of a real variation of stability conditions (which is related to Bridgelands stability conditions), and construct an example using categories of coherent sheaves on Springer fibers. Here we construct another example of representation theoretic significance, by studying certain sub-quotients of category O with a fixed Gelfand-Kirillov dimension. We use the braid group action on the derived category of category O, and certain leading coefficient polynomials coming from translation functors. Consequently, we use this to explicitly describe a sub-manifold in the space of Bridgeland stability conditions on these sub-quotient categories, which is a covering space of a hyperplane complement in the dual Cartan.



rate research

Read More

We investigate various ways to define an analogue of BGG category $mathcal{O}$ for the non-semi-simple Takiff extension of the Lie algebra $mathfrak{sl}_2$. We describe Gabriel quivers for blocks of these analogues of category $mathcal{O}$ and prove extension fullness of one of them in the category of all modules.
160 - Apoorva Khare 2015
The main goal of this paper is to show that a wide variety of infinite-dimensional algebras all share a common structure, including a triangular decomposition and a theory of weights. This structure allows us to define and study the BGG Category O, generalizing previous definitions of it. Having presented our axiomatic framework, we present sufficient conditions that guarantee finite length, enough projectives, and a block decomposition into highest weight categories. The framework is strictly more general than the usual theory of O; this is needed to accommodate (quantized or higher rank) infinitesimal Hecke algebras, in addition to semisimple Lie algebras and their quantum groups. We then present numerous examples, two families of which are studied in detail. These are quantum groups defined using not necessarily the root or weight lattices (for these, we study the center and central characters), and infinitesimal Hecke algebras.
162 - Apoorva Khare 2009
This article aims to contribute to the study of algebras with triangular decomposition over a Hopf algebra, as well as the BGG Category O. We study functorial properties of O across various setups. The first setup is over a skew group ring, involving a finite group $Gamma$ acting on a regular triangular algebra $A$. We develop Clifford theory for $A rtimes Gamma$, and obtain results on block decomposition, complete reducibility, and enough projectives. O is shown to be a highest weight category when $A$ satisfies one of the Conditions (S); the BGG Reciprocity formula is slightly different because the duality functor need not preserve each simple module. Next, we turn to tensor products of such skew group rings; such a product is also a skew group ring. We are thus able to relate four different types of Categories O; more precisely, we list several conditions, each of which is equivalent in any one setup, to any other setup - and which yield information about O.
Let $p$ be a prime number, $F$ a totally real number field unramified at places above $p$ and $D$ a quaternion algebra of center $F$ split at places above $p$ and at no more than one infinite place. Let $v$ be a fixed place of $F$ above $p$ and $overline{r} : {rm Gal}(overline F/F)rightarrow mathrm{GL}_2(overline{mathbb{F}}_p)$ an irreducible modular continuous Galois representation which, at the place $v$, is semisimple and sufficiently generic (and satisfies some weak genericity conditions at a few other finite places). We prove that many of the admissible smooth representations of $mathrm{GL}_2(F_v)$ over $overline{mathbb{F}}_p$ associated to $overline{r}$ in the corresponding Hecke-eigenspaces of the mod $p$ cohomology have Gelfand--Kirillov dimension $[F_v:mathbb{Q}]$, as well as several related results.
We introduce and study action of quantum groups on skew polynomial rings and related rings of quotients. This leads to a ``q-deformation of the Gelfand-Kirillov conjecture which we partially prove. We propose a construction of automorphisms of certain non-commutaive rings of quotients coming from complex powers of quantum group generators; this is applied to explicit calculation of singular vectors in Verma modules over $U_{q}(gtsl_{n+1})$. We finally give a definition of a $q-$connection with coefficients in a ring of skew polynomials and study the structure of quantum group modules twisted by a $q-$connection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا