Do you want to publish a course? Click here

Nature of single-particle states in disordered graphene

76   0   0.0 ( 0 )
 Added by Arti Garg
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the nature of the single particle states, away from the Dirac point, in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. For a disorder potential $V(vec{r})=V_0exp(-|vec{r}-vec{r}_{imp}|^2/xi^2)$, we demonstrate that not only the Dirac state but all the single particle states remain extended for weak enough disorder. Based on our numerical calculations of inverse participation ratio, dc conductivity, diffusion coefficient and the localization length from time evolution dynamics of the wave packet, we show that the threshold $V_{th}$ required to localize a single particle state of energy $E(vec{k})$ is minimum for the states near the band edge and is maximum for states near the band center, implying a mobility edge starting from the band edge for weak disorder and moving towards the band center as the disorder strength increases. This can be explained in terms of the low energy Hamiltonian at any point $vec{k}$ which has the same nature as that at the Dirac point. From the nature of the eigenfunctions it follows that a weak long range impurity will cause weak anti localization effects, which can be suppressed, giving localization if the strength of impurities is sufficiently large to cause inter-valley scattering. The inter valley spacing $2|vec{k}|$ increases as one moves in from the band edge towards the band center, which is reflected in the behavior of $V_{th}$ and the mobility edge.



rate research

Read More

We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investigate the behaviour of the density of states (DOS) numerically and analytically. While an upper bound can be derived for the DOS on the SQL at the Dirac point, which is also confirmed by numerical calculations, no such upper limit exists for the HCL in the presence of random vector potential. A careful investigation of the lowest eigenvalues indeed indicate, that the DOS can possibly be divergent at the Dirac point on the HCL. In spite of sharing a common continuum limit, these lattice models exhibit different behaviour.
We calculate the average single particle density of states in graphene with disorder due to impurity potentials. For unscreened short-ranged impurities, we use the non-self-consistent and self-consistent Born and $T$-matrix approximations to obtain the self-energy. Among these, only the self-consistent $T$-matrix approximation gives a non-zero density of states at the Dirac point. The density of states at the Dirac point is non-analytic in the impurity potential. For screened short-ranged and charged long-range impurity potentials, the density of states near the Dirac point typically increases in the presence of impurities, compared to that of the pure system.
We study the dynamics of the electrons in a non-uniform magnetic field applied perpendicular to a graphene sheet in the low energy limit when the excitation states can be described by a Dirac type Hamiltonian. We show that as compared to the two-dimensional electron gas (2DEG) snake states in graphene exibit peculiar properties related to the underlying dynamics of the Dirac fermions. The current carried by snake states is locally uncompensated even if the Fermi energy lies between the first non-zero energy Landau levels of the conduction and valence bands. The nature of these states is studied by calculating the current density distribution. It is shown that besides the snake states in finite samples surface states also exist.
In this paper, the average density of states (ADOS) with a binary alloy disorder in disordered graphene systems are calculated based on the recursion method. We observe an obvious resonant peak caused by interactions with surrounding impurities and an anti-resonance dip in ADOS curves near the Dirac point. We also find that the resonance energy (Er) and the dip position are sensitive to the concentration of disorders (x) and their on-site potentials (v). An linear relation, not only holds when the impurity concentration is low but this relation can be further extended to high impurity concentration regime with certain constraints. We also calculate the ADOS with a finite density of vacancies and compare our results with the previous theoretical results.
We study the conductance of disordered graphene superlattices with short-range structural correlations. The system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around their mean value. The effect of the randomness on the probability of transmission through the system of various sizes is studied. We show that in a disordered superlattice the quasiparticle that approaches the barrier interface almost perpendicularly transmits through the system. The conductivity of the finite-size system is computed and shown that the conductance vanishes when the sample size becomes very large, whereas for some specific structures the conductance tends to a nonzero value in the thermodynamics limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا