Do you want to publish a course? Click here

The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

133   0   0.0 ( 0 )
 Added by Timea Csengeri Dr.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane. Here we use the 353 GHz maps from the Planck/HFI instrument to complement the ground-based APEX/LABOCA observations with information on larger angular scales. The resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We find examples of elongated structures extending over angular scales of 0.5 degree. Corresponding to >30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. Furthermore, we assess the fraction of dense gas ($f_{rm DG}$), and estimate 2-5% (above A$_{rm{v}}>$7 mag) on average in the Galactic plane. PDFs of the column density reveal the typically observed log-normal distribution for low- and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of $sim2.2$%, above $N_{rm H_2} = 2.92times10^{22}$ cm$^{-2}$. Taking the total flux density, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of $sim1times10^9,M_{odot}$, which is consistent with previous estimates using CO emission. From the mass and $f_{rm DG}$ we estimate a Galactic SFR of $dot M = 1.3,M_{odot}$ yr$^{-1}$. While the distribution of diffuse gas is homogenous in the inner Galaxy, the CMZ stands out with a higher dense gas fraction. The low star formation efficiency of the Milky Way is well explained by the low $f_{rm DG}$ in the Galactic ISM, while the high $f_{rm DG}$ towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high-density gas is not the bottleneck for star formation.



rate research

Read More

The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites which can potentially host precursors to high-mass stars. Here we use the ATLASGAL survey covering 420 sq. degree of the Galactic plane at 870 $mu$m; and use the MRE-GLC method to identify the population of embedded sources throughout the inner Galaxy. We identify in total 10861 compact sub-millimeter sources with fluxes above 5 sigma. Completeness tests show that our catalogue is 97% complete above 5 sigma and >99% complete above 7$sigma$. We correlate this sample with mid-infrared point source catalogues (MSX at 21.3 $mu$m and WISE at 22 $mu$m) and determine a lower limit of ~33% that are associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with star-formation. Examining the source counts as a function of Galactic longitude we are able to identify the most prominent star forming regions in the Galaxy. From the fraction of the likely massive quiescent clumps (~25%) we estimate a formation time-scale of ~7.5+/-2.5 $times$ 10$^4$yr for the deeply embedded phase before the emergence of luminous YSOs. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions.
We report the detection of four new hot corino sources, G211.47-19.27S, G208.68-19.20N1, G210.49-19.79W and G192.12-11.10 from a survey study of Planck Galactic Cold Clumps in the Orion Molecular Cloud Complex with the Atacama Compact Array (ACA). Three sources had been identified as low mass Class 0 protostars in the Herschel Orion Protostar Survey (HOPS). One source in the lambda Orionis region is firstly reported as a protostellar core. We have observed abundant complex organic molecules (COMs), primarily methanol but also other oxygen-bearing COMs (in G211.47-19.27S and G208.68-19.20N1) and the molecule of prebiotic interest NH2CHO (in G211.47-19.27S), signifying the presence of hot corinos. While our spatial resolution is not sufficient for resolving most of the molecular emission structure, the large linewidth and high rotational temperature of COMs suggest that they likely reside in the hotter and innermost region immediately surrounding the protostar. In G211.47-19.27S, the D/H ratio of methanol ([CH2DOH]/[CH3OH]) and the 12C/13C ratio of methanol ([CH3OH]/[13CH3OH]) are comparable to those of other hot corinos. Hydrocarbons and long carbon-chain molecules such as c-C3H2 and HCCCN are also detected in the four sources, likely tracing the outer and cooler molecular envelopes.
The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 micron, ATLASGAL, has been conducted to discover high-mass star-forming regions at different evolutionary phases. Using the Parkes telescope, we observed the NH3 (1,1) to (3,3) inversion transitions towards 354 ATLASGAL clumps in the fourth quadrant. For a subsample of 289 sources, the N2H+ (1-0) line was measured with the Mopra telescope. We measured a median NH3(1,1) line width of about 2 km/s and rotational temperatures from 12 to 28 K with a mean of 18 K. For a subsample with detected NH3 (2,2) hyperfine components, we found that the commonly used method to compute the (2,2) optical depth from the (1,1) optical depth and the (2,2) to (1,1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of about 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of about 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We found a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores and smaller velocity dispersions in low-mass than high-mass star-forming regions. The NH3 (1,1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27+/-0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9+/-0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06+/-0.02 and standard deviation of 0.37 are closer to 1.
We use Planck HFI data combined with ancillary radio data to study the emissivity index of the interstellar dust emission in the frequency range 10 - 353 GHz, or 3 - 0.8 mm, in the Galactic plane. We analyse the region l=20 degr - 44 degr and |b| leq 4 degr where the free-free emission can be estimated from radio recombination line data. We fit the spectra at each sky pixel with a modified blackbody model and two spectral indices, beta_mm and beta_FIR, below and above 353 GHz respectively. We find that beta_mm is smaller than beta_FIR and we detect a correlation between this low frequency power-law index and the dust optical depth at 353 GHz, tau_353. The opacity spectral index beta_mm increases from about 1.54 in the more diffuse regions of the Galactic disk, |b| = 3 degr - 4 degr and tau_353 ~ 5 x 10^{-5}, to about 1.66 in the densest regions with an optical depth of more than one order of magnitude higher. We associate this correlation with an evolution of the dust emissivity related to the fraction of molecular gas along the line of sight. This translates into beta_mm ~ 1.54 for a medium that is mostly atomic and beta_mm ~ 1.66 when the medium is dominated by molecular gas. We find that both the Two-Level System model and the emission by ferromagnetic particles can explain the results. The results improve our understanding of the physics of interstellar dust and lead towards a complete model of the dust spectrum of the Milky Way from far-infrared to millimetre wavelengths.
We present a catalog of eclipsing binaries in the northern Galactic Plane from the Kiso Wide-Field Camera Intensive Survey of the Galactic Plane (KISOGP). We visually identified 7055 eclipsing binaries spread across $sim$330 square degrees, including 4197 W Ursa Majoris/EW-, 1458 $beta$ Lyrae/EB-, and 1400 Algol/EA-type eclipsing binaries. For all systems, $I$-band light curves were used to obtain accurate system parameters. We derived the distances and extinction values for the EW-type objects from their period--luminosity relation. We also obtained the structure of the thin disk from the distribution of our sample of eclipsing binary systems, combined with those of high-mass star-forming regions and Cepheid tracers. We found that the thin disk is inhomogeneous in number density as a function of Galactic longitude. Using this new set of distance tracers, we constrain the detailed structure of the thin disk. Finally, we report a global parallax zero-point offset of $ Delta pi=-42.1pm1.9mbox{(stat.)}pm12.9mbox{(syst.)}$ $mu$as between our carefully calibrated EW-type eclipsing binary positions and those provided by Gaia Early Data Release 3. Implementation of the officially recommended parallax zero-point correction results in a significantly reduced offset. Additionally, we provide a photometric characterization of our EW-type eclipsing binaries that can be applied to further analyses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا