Do you want to publish a course? Click here

Images Dont Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank

130   0   0.0 ( 0 )
 Added by Kamelia Aryafar
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Search is at the heart of modern e-commerce. As a result, the task of ranking search results automatically (learning to rank) is a multibillion dollar machine learning problem. Traditional models optimize over a few hand-constructed features based on the items text. In this paper, we introduce a multimodal learning to rank model that combines these traditional features with visual semantic features transferred from a deep convolutional neural network. In a large scale experiment using data from the online marketplace Etsy, we verify that moving to a multimodal representation significantly improves ranking quality. We show how image features can capture fine-grained style information not available in a text-only representation. In addition, we show concrete examples of how image information can successfully disentangle pairs of highly different items that are ranked similarly by a text-only model.

rate research

Read More

The complexity of the visual world creates significant challenges for comprehensive visual understanding. In spite of recent successes in visual recognition, todays vision systems would still struggle to deal with visual queries that require a deeper reasoning. We propose a knowledge base (KB) framework to handle an assortment of visual queries, without the need to train new classifiers for new tasks. Building such a large-scale multimodal KB presents a major challenge of scalability. We cast a large-scale MRF into a KB representation, incorporating visual, textual and structured data, as well as their diverse relations. We introduce a scalable knowledge base construction system that is capable of building a KB with half billion variables and millions of parameters in a few hours. Our system achieves competitive results compared to purpose-built models on standard recognition and retrieval tasks, while exhibiting greater flexibility in answering richer visual queries.
We present a learning-based method for detecting real and fake deepfake multimedia content. To maximize information for learning, we extract and analyze the similarity between the two audio and visual modalities from within the same video. Additionally, we extract and compare affective cues corresponding to perceived emotion from the two modalities within a video to infer whether the input video is real or fake. We propose a deep learning network, inspired by the Siamese network architecture and the triplet loss. To validate our model, we report the AUC metric on two large-scale deepfake detection datasets, DeepFake-TIMIT Dataset and DFDC. We compare our approach with several SOTA deepfake detection methods and report per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets, respectively. To the best of our knowledge, ours is the first approach that simultaneously exploits audio and video modalities and also perceived emotions from the two modalities for deepfake detection.
While deep convolutional neural networks (CNN) have been successfully applied for 2D image analysis, it is still challenging to apply them to 3D anisotropic volumes, especially when the within-slice resolution is much higher than the between-slice resolution and when the amount of 3D volumes is relatively small. On one hand, direct learning of CNN with 3D convolution kernels suffers from the lack of data and likely ends up with poor generalization; insufficient GPU memory limits the model size or representational power. On the other hand, applying 2D CNN with generalizable features to 2D slices ignores between-slice information. Coupling 2D network with LSTM to further handle the between-slice information is not optimal due to the difficulty in LSTM learning. To overcome the above challenges, we propose a 3D Anisotropic Hybrid Network (AH-Net) that transfers convolutional features learned from 2D images to 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modelling. The focal loss is further utilized for more effective end-to-end learning. We experiment with the proposed 3D AH-Net on two different medical image analysis tasks, namely lesion detection from a Digital Breast Tomosynthesis volume, and liver and liver tumor segmentation from a Computed Tomography volume and obtain the state-of-the-art results.
114 - Dandan Guo , Ruiying Lu , Bo Chen 2021
Observing a set of images and their corresponding paragraph-captions, a challenging task is to learn how to produce a semantically coherent paragraph to describe the visual content of an image. Inspired by recent successes in integrating semantic topics into this task, this paper develops a plug-and-play hierarchical-topic-guided image paragraph generation framework, which couples a visual extractor with a deep topic model to guide the learning of a language model. To capture the correlations between the image and text at multiple levels of abstraction and learn the semantic topics from images, we design a variational inference network to build the mapping from image features to textual captions. To guide the paragraph generation, the learned hierarchical topics and visual features are integrated into the language model, including Long Short-Term Memory (LSTM) and Transformer, and jointly optimized. Experiments on public dataset demonstrate that the proposed models, which are competitive with many state-of-the-art approaches in terms of standard evaluation metrics, can be used to both distill interpretable multi-layer topics and generate diverse and coherent captions.
82 - Lang Nie , Chunyu Lin , Kang Liao 2021
Traditional feature-based image stitching technologies rely heavily on feature detection quality, often failing to stitch images with few features or low resolution. The learning-based image stitching solutions are rarely studied due to the lack of labeled data, making the supervised methods unreliable. To address the above limitations, we propose an unsupervised deep image stitching framework consisting of two stages: unsupervised coarse image alignment and unsupervised image reconstruction. In the first stage, we design an ablation-based loss to constrain an unsupervised homography network, which is more suitable for large-baseline scenes. Moreover, a transformer layer is introduced to warp the input images in the stitching-domain space. In the second stage, motivated by the insight that the misalignments in pixel-level can be eliminated to a certain extent in feature-level, we design an unsupervised image reconstruction network to eliminate the artifacts from features to pixels. Specifically, the reconstruction network can be implemented by a low-resolution deformation branch and a high-resolution refined branch, learning the deformation rules of image stitching and enhancing the resolution simultaneously. To establish an evaluation benchmark and train the learning framework, a comprehensive real-world image dataset for unsupervised deep image stitching is presented and released. Extensive experiments well demonstrate the superiority of our method over other state-of-the-art solutions. Even compared with the supervised solutions, our image stitching quality is still preferred by users.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا