Do you want to publish a course? Click here

Site-resolved imaging of a fermionic Mott insulator

105   0   0.0 ( 0 )
 Added by Daniel Greif
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolution offers important insights. Here we report site-resolved imaging of two-component fermionic Mott insulators, metals, and band insulators using ultracold atoms in a square lattice. For strong repulsive interactions we observe two-dimensional Mott insulators containing over 400 atoms. For intermediate interactions, we observe a coexistence of phases. From comparison to theory we find trap-averaged entropies per particle of $1.0,k_{mathrm{B}}$. In the band-insulator we find local entropies as low as $0.5,k_{mathrm{B}}$. Access to local observables will aid the understanding of fermionic many-body systems in regimes inaccessible by modern theoretical methods.

rate research

Read More

Considering a system of ultracold atoms in an optical lattice, we propose a simple and robust implementation of a quantum simulator for the homogeneous t-J model with a well-controlled fraction of holes x. The proposed experiment can provide valuable insight into the physics of cuprate superconductors. A similar scheme applied to bosons, moreover, allows one to investigate experimentally the subtle role of inhomogeneity when a system passes from one quantum phase to another.
We successfully demonstrate a quantum gas microscopy using the Faraday effect which has an inherently non-destructive nature. The observed Faraday rotation angle reaches 3.0(2) degrees for a single atom. We reveal the non-destructive feature of this Faraday imaging method by comparing the detuning dependence of the Faraday signal strength with that of the photon scattering rate. We determine the atom distribution with deconvolution analysis. We also demonstrate the absorption and the dark field Faraday imaging, and reveal the different shapes of the point spread functions for these methods, which are fully explained by theoretical analysis. Our result is an important first step towards an ultimate quantum non-demolition site-resolved imaging and furthermore opens up the possibilities for quantum feedback control of a quantum many-body system with a single-site resolution.
We study analytically and with the numerical time-evolving block decimation method the dynamics of an impurity in a bath of spinless fermions with nearest-neighbor interactions in a one-dimensional lattice. The bath is in a Mott insulator state with alternating sites occupied and the impurity interacts with the bath by repulsive on-site interactions. We find that when the magnitudes of the on-site and nearest-neighbor interactions are close to each other, the system shows excitations of two qualitatively distinct types. For the first type, a domain wall and an anti-domain wall of density propagate in opposite directions, while the impurity stays at the initial position. For the second one, the impurity is bound to the anti-domain wall while the domain wall propagates, an excitation where the impurity and bath are closely coupled.
Quantum gas microscopes have expanded the capabilities of quantum simulation of Hubbard models by enabling the study of spatial spin and density correlations in square lattices. However, quantum gas microscopes have not been realized for fermionic atoms in frustrated geometries. Here, we demonstrate the single-atom resolved imaging of ultracold fermionic $^{6}$Li atoms in a triangular optical lattice with a lattice constant of 1003 nm. The optical lattice is formed by a recycled narrow-linewidth, high-power laser combined with a light sheet to allow for Raman sideband cooling on the $D_1$ line. We optically resolve single atoms on individual lattice sites using a high-resolution objective to collect scattered photons while cooling them close to the two-dimensional ground vibrational level in each lattice site. By reconstructing the lattice occupation, we measure an imaging fidelity of ~98%. Our new triangular lattice microscope platform for fermions clears the path for studying spin-spin correlations, entanglement and dynamics of geometrically frustrated Hubbard systems which are expected to exhibit exotic emergent phenomena including spin liquids and kinetic frustration.
265 - M. Gall , C. F. Chan , N. Wurz 2019
We study the particle-hole symmetry in the Hubbard model using ultracold fermionic atoms in an optical lattice. We demonstrate the mapping between charge and spin degrees of freedom and, in particular, show the occurrence of a state with incompressible magnetisation for attractive interactions. Our results present a novel approach to quantum simulation by giving access to strongly-correlated phases of matter through an experimental mapping to easier detectable observables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا