No Arabic abstract
Quantum gas microscopes have expanded the capabilities of quantum simulation of Hubbard models by enabling the study of spatial spin and density correlations in square lattices. However, quantum gas microscopes have not been realized for fermionic atoms in frustrated geometries. Here, we demonstrate the single-atom resolved imaging of ultracold fermionic $^{6}$Li atoms in a triangular optical lattice with a lattice constant of 1003 nm. The optical lattice is formed by a recycled narrow-linewidth, high-power laser combined with a light sheet to allow for Raman sideband cooling on the $D_1$ line. We optically resolve single atoms on individual lattice sites using a high-resolution objective to collect scattered photons while cooling them close to the two-dimensional ground vibrational level in each lattice site. By reconstructing the lattice occupation, we measure an imaging fidelity of ~98%. Our new triangular lattice microscope platform for fermions clears the path for studying spin-spin correlations, entanglement and dynamics of geometrically frustrated Hubbard systems which are expected to exhibit exotic emergent phenomena including spin liquids and kinetic frustration.
We successfully demonstrate a quantum gas microscopy using the Faraday effect which has an inherently non-destructive nature. The observed Faraday rotation angle reaches 3.0(2) degrees for a single atom. We reveal the non-destructive feature of this Faraday imaging method by comparing the detuning dependence of the Faraday signal strength with that of the photon scattering rate. We determine the atom distribution with deconvolution analysis. We also demonstrate the absorption and the dark field Faraday imaging, and reveal the different shapes of the point spread functions for these methods, which are fully explained by theoretical analysis. Our result is an important first step towards an ultimate quantum non-demolition site-resolved imaging and furthermore opens up the possibilities for quantum feedback control of a quantum many-body system with a single-site resolution.
We study the influence of quantum density fluctuations in ultracold atoms in an optical lattice on the scattering of matter waves. Such fluctuations are characteristic of the superfluid phase and vanish due to increased interactions in the Mott insulating phase. We employ an analytical treatment of the scattering and demonstrate that the fluctuations lead to incoherent processes, which we propose to observe via decoherence of the fringes in a Mach-Zender interferometer. In this way we extract the purely coherent part of the scattering. Further, we show that the quantum density fluctuations can also be observed directly in the differential angular scattering cross section for an atomic beam scattered from the atoms in a lattice. Here we find an explicit dependence of the scale of the inelastic scattering on the quantum density fluctuations.
Observation of topological phases beyond two-dimension (2D) has been an open challenge for ultracold atoms. Here, we realize for the first time a 3D spin-orbit coupled nodal-line semimetal in an optical lattice and observe the bulk line nodes with ultracold fermions. The realized topological semimetal exhibits an emergent magnetic group symmetry. This allows to detect the nodal lines by effectively reconstructing the 3D topological band from a series of measurements of integrated spin textures, which precisely render spin textures on the parameter-tuned magnetic-group-symmetric planes. The detection technique can be generally applied to explore 3D topological states of similar symmetries. Furthermore, we observe the band inversion lines from topological quench dynamics, which are bulk counterparts of Fermi arc states and connect the Dirac points, reconfirming the realized topological band. Our results demonstrate the first approach to effectively observe 3D band topology, and open the way to probe exotic topological physics for ultracold atoms in high dimensions.
We propose to realize the anisotropic triangular-lattice Bose-Hubbard model with positive tunneling matrix elements by using ultracold atoms in an optical lattice dressed by a fast lattice oscillation. This model exhibits frustrated antiferromagnetism at experimentally feasible temperatures; it interpolates between a classical rotor model for weak interaction, and a quantum spin-1/2 $XY$-model in the limit of hard-core bosons. This allows to explore experimentally gapped spin liquid phases predicted recently [Schmied et al., New J. Phys. {bf 10}, 045017 (2008)].
Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central role in poorly-understood properties of quasicrystals from excitation spectra to wavefunction statistics to electronic transport. However, phasons are challenging to access dynamically in the solid state due to their complex long-range character and the effects of disorder and strain. We report phasonic spectroscopy of a quantum gas in a one-dimensional quasicrystalline optical lattice. We observe that strong phasonic driving produces a nonperturbative high-harmonic plateau strikingly different from the effects of standard dipolar driving. Tuning the potential from crystalline to quasicrystalline, we identify spectroscopic signatures of quasiperiodicity and interactions and map the emergence of a multifractal energy spectrum, opening a path to direct imaging of the Hofstadter butterfly.