No Arabic abstract
We have derived new very accurate abundances of the Fe-group elements Sc through Zn (Z = 21-30) in the bright main-sequence turnoff star HD 84937, based on high-resolution spectra covering the visible and ultraviolet spectral regions. New or recent laboratory transition data for 14 species of seven elements have been used. Abundances from more than 600 lines of non-Fe species have been combined with about 550 Fe lines in HD 84937 to yield abundance ratios of high precision. The abundances have been determined from both neutral and ionized transitions, which generally are in agreement with each other. We find no substantial departures from standard LTE Saha ionization balance in this [Fe/H] = -2.32 star. Noteworthy among the abundances are: [Co/Fe] = 0.14 and [Cu/Fe] = -0.83, in agreement with past studies abundance trends in this and other low metallicity stars; and <[Sc,Ti,V/Fe]> = 0.31, which has not been noted previously. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys reveals that they are positively correlated in stars with [Fe/H] < -2; HD 84937 lies at the high end of this correlation. These trends constrain the synthesis mechanisms of Fe-group elements. We also examine the GCE abundance trends of the Fe-group elements, including a new nucleosynthesis model with jet-like explosion effects.
We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H] $approx -3$) stars: BD 03 740, BD -13 3442 and CD -33 1173. High-resolution ultraviolet HST/STIS spectra in the wavelength range 2300-3050AA were gathered, and complemented by an assortment of optical echelle spectra. The analysis featured recent laboratory atomic data for number of neutral and ionized species for all Fe-group elements except Cu and Zn. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys indicates that they are positively correlated in stars with [Fe/H]<-$2. The abundances of these elements in BD 03 740, BD -13 3442 and CD -33 1173 and HD 84937. (studied in a previous paper of this series) are in accord with these trends and lie at the high end of the correlations. Six elements have detectable neutral and ionized features, and generally their abundances are in reasonable agreement. For Cr we find only minimal abundance disagreement between the neutral (mean of [Cri/Fe]=+0.01) and ionized species (mean of [Crii/Fe]=+0.08), unlike most studies in the past. The prominent exception is Co, for which the neutral species indicates a significant overabundance (mean of [Co/H]=-2.53), while no such enhancement is seen for the ionized species (mean of [Coii/H]=-2.93). These new stellar abundances, especially the correlations among Sc, Ti, and V, suggest that models of element production in early high-mass metal-poor stars should be revisited.
We report the discovery of a cool metal-poor, main-sequence star exhibiting large excesses of r-process elements. This star is one of two newly discovered cool subdwarfs (effective temperatures of 5000 K) with extremely low metallicity ([Fe/H]<-3) identified from follow-up high-resolution spectroscopy of metal-poor candidates from the Sloan Digital Sky Survey. SDSS J2357-0052 has [Fe/H]=-3.4 and [Eu/Fe]=+1.9, and exhibits a scaled solar r-process abundance pattern of heavy neutron-capture elements. This is the first example of an extremely metal-poor, main-sequence star showing large excesses of r-process elements; all previous examples of the large r-process-enhancement phenomena have been associated with metal-poor giants. The metallicity of this object is the lowest, and the excess of Eu ([Eu/Fe]) is the highest, among the r-process-enhanced stars found so far. We consider possible scenarios to account for the detection of such a star, and discuss techniques to enable searches for similar stars in the future.
The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the MS lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant; and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution; and the rotationally induced extension would disappear in the old intermediate-age star clusters; but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some multiple populations in globular clusters.
In order to provide a better basis for the study of mechanisms of nucleosynthesis of the light elements beyond hydrogen and helium in the oldest stars, the abundances of C, O, Mg, Si, P, S, K, and Ca have been derived from UV-HST and visible-ESO high resolution spectra in the old, very metal-poor star HD 84937, at a metallicity that is 1/200 that of the Suns. For this halo main-sequence turnoff star, the abundance determination of P and S are the first published determinations. The LTE profiles of the lines were fitted to the observed spectra. Wherever possible, we corrected the derived abundances for non-LTE effects. Three-dimensional (3D) CO5BOLD model atmospheres have been used to determine the abundances of C and O from molecular CH and OH bands. The abundances of these light elements in HD 84937 are found to agree well with the abundances in classical metal-poor stars. Our HD 84937 carbon abundance determination points toward a solar (or mildly enhanced) value of [C/Fe]. The modest overabundance of the alpha elements of even atomic number Z, typical of halo turnoff stars, is confirmed in this example. The odd-Z element P is found to be somewhat deficient in HD 84937, at [P/Fe]=-0.32, which is again consistent with the handful of existing determinations for turnoff stars of such low metallicity. We show that the abundance of oxygen, deduced from the OH band from 3D computations, is not compatible with the abundance deduced from the red oxygen triplet. This incompatibility is explained by the existence of a chromosphere heating the shallow layers of the atmosphere where the OH band, in 3D computations, is mainly formed. The abundance ratios are compared to the predictions of models of galactic nucleosynthesis and evolution
The method of gyrochronology relates the age of its star to its rotation period. However, recent evidence of deviations from gyrochronology relations was reported in the literature. Here, we study the influence of tidal interaction between a star and its companion on the rotation velocity of the star, in order to explain peculiar stellar rotation velocities. The interaction of a star and its planet is followed using a comprehensive numerical framework that combines tidal friction, magnetic braking, planet migration, and detailed stellar evolution models from the GARSTEC grid. We focus on close-in companions from 1 to 20 M$_{Jup}$ orbiting low-mass, 0.8 and 1 M$_{odot}$, main-sequence stars with a broad metallicity range from [Fe/H] = -1 to solar. Our simulations suggest that the dynamical interaction between a star and its companion can have different outcomes, which depend on the initial semi-major axis and the mass of the planet, as well as the mass and metallicity of its host star. In most cases, especially in the case of planet engulfment, we find a catastrophic increase in stellar rotation velocity from 1 kms$^{-1}$ to over 40 kms$^{-1}$, while the star is still on the main-sequence. The main prediction of our model is that low-mass main-sequence stars with abnormal rotation velocities should be more common at low-metallicity, as lower [Fe/H] favours faster planet engulfment, provided occurrence rate of close in massive planets is similar at all metallicities. Our scenario explains peculiar rotation velocities of low-mass main-sequence stars by the tidal interaction between the star and its companion. Current observational samples are too small and incomplete, and thus do not allow us to test our model.