No Arabic abstract
In this talk, I present the brand new results from the H1 and ZEUS Collaborations on the combination of all previously published inclusive deep inelastic cross sections at HERA for neutral and charged current $e^pm p$ scattering for zero beam polarisation and the corresponding parton distributions functions, HERAPDF 2.0, at up to next-to-next-to-leading order (NNLO). The results also include a new precise determination at next-to-leading order (NLO) of the strong coupling constant $alpha_s(M^2_Z)=0.1184pm 0.0016$ (excluding scale uncertainties) based on a simultaneous fit to the combined inclusive cross section data and jet production data.
High-Q^2 NC and CC DIS cross sections have been measured by H1 and ZEUS at HERA. Both NC and CC results based on data taken during the year 1994-2000 are in good agreement with Standard Model expectations. The structure function xF_3 is extracted from the NC cross sections and the mass of the W propagator is extracted from the CC cross sections. Valence quark distributions are derived by means of an NLO QCD fit.
Using a custom 3 v{C}erenkov-ring fitter, we report cross sections for $ u_mu$-induced charged-current single $pi^0$ production on mineral oil (chtwo) from a sample of 5810 candidate events with 57% signal purity over an energy range of $0.5-2.0$GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of $Q^2$, $mu^-$ kinematics, and $pi^0$ kinematics. The sample yields a flux-averaged total cross section of $(9.2pm0.3_{stat.}pm1.5_{syst.})times10^{-39}$cm$^2$/CH$_2$ at mean neutrino energy of 0.965GeV.
Based on the requirement in the simulation of lepton-nucleus deep inelastic scattering (DIS), we construct a fortran program LDCS 1.0 calculating the differential and total cross sections for the unpolarized charged lepton-unpolarized nucleon and neutrino-unpolarized nucleon neutral current (charged current) DIS at leading order. Any set of the experimentally fitted parton distribution functions could be employed directly. The mass of incident and scattered leptons is taken into account and the boundary conditions calculating the single differential and total cross section are studied. The calculated results well agree with the corresponding experimental data which indicating the LDCS 1.0 program is good. It is also turned out that the effect of tauon mass is not negligible in the GeV energy level.
The ArgoNeuT collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beamline at Fermilab, the results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, $0^circ$$<theta_mu$$<36^circ$ and 0$<P_mu$$<25$ GeV/c. Along with confirming the viability of liquid argon time projection chamber technology for neutrino detection, the measurements allow tests of low energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy.
We present the first measurement of the single-differential $ u_e + bar{ u}_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of $2.0times10^{20}$ protons on target. The signal definition includes a 60 MeV threshold on the $ u_e$ or $bar{ u}_e$ energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the GENIE, NuWro, and GiBUU neutrino generators.