Do you want to publish a course? Click here

Measurement of $ u_mu$-induced charged-current neutral pion production cross sections on mineral oil at $E_ uin0.5-2.0$ GeV

308   0   0.0 ( 0 )
 Added by Robert Nelson
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Using a custom 3 v{C}erenkov-ring fitter, we report cross sections for $ u_mu$-induced charged-current single $pi^0$ production on mineral oil (chtwo) from a sample of 5810 candidate events with 57% signal purity over an energy range of $0.5-2.0$GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of $Q^2$, $mu^-$ kinematics, and $pi^0$ kinematics. The sample yields a flux-averaged total cross section of $(9.2pm0.3_{stat.}pm1.5_{syst.})times10^{-39}$cm$^2$/CH$_2$ at mean neutrino energy of 0.965GeV.



rate research

Read More

Using a high-statistics, high-purity sample of $ u_mu$-induced charged current, charged pion events in mineral oil (CH$_2$), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CC$pi^+$ cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities have been measured on a nuclear target and in the 1 GeV energy range.
154 - T. Le , J.L. Palomino , L. Aliaga 2015
Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $bar{ u}_e$ appearance oscillation experiments. The differential cross sections for $pi^0$ momentum and production angle, for events with a single observed $pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $pi^0$ kinematics for this process.
MINERvA presents a new analysis of inclusive charged-current neutrino interactions on a hydrocarbon target. We report single and double-differential cross sections in muon transverse and longitudinal momentum. These measurements are compared to neutrino interaction generator predictions from GENIE, NuWro, GiBUU, and NEUT. In addition, comparisons against models with different treatments of multi-nucleon correlations, nuclear effects, resonant pion production, and deep inelastic scattering are presented. The data recorded corresponds to $10.61times10^{20}$ protons on target with a peak neutrino energy of approximately 6 GeV. The higher energy and larger statistics of these data extend the kinematic range for model testing beyond previous MINERvA inclusive charged-current measurements. The results are not well modeled by several generator predictions using a variety of input models.
107 - B. Eberly , L. Aliaga , O. Altinok 2014
Charged pion production via charged current $ u_{mu}$ interactions on plastic (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W $<$ 1.4 GeV are selected to isolate single pion production, which is expected to occur primarily through the $Delta(1232)$ resonance. Cross sections as functions of pion production angle and kinetic energy are reported and compared to predictions from different theoretical calculations and generator-based models, for neutrinos ranging in energy from 1.5 GeV to 10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. These measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.
The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا