No Arabic abstract
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term $m^{2n-2} RBox^{-n}R$ to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent $n$. We find that the half of the scalar fields are always ghost-like and the exponent $n$ must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent $n$ should be even numbers by discuss the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of $n=2$.
We present a new bouncing cosmological solution of the non-local theory known as infinite derivative gravity, which goes beyond the recursive ansatz, ${Box R = r_1 R +r_2}$. The non-local field equations are evaluated using the spectral decomposition with respect to the eigenfunctions of the wave operator. The energy-momentum tensor computed for this geometry turns out to be much more sensitive to the choice of the non-local form-factor, since it depends on the value of the function on a continuous infinite interval. We show that this stronger dependence on the form-factor allows us to source the geometry by the perfect fluid with the non-negative energy density satisfying the strong energy condition. We show that this bouncing behaviour is not possible in the local theories of gravity such as in general relativity or $R+R^2$ gravity sourced by a fluid which meets the non-negative energy and strong energy conditions.
We study and derive the energy conditions in generalized non-local gravity, which is the modified theory of general relativity (GR) obtained by adding a term $m^{2n-2}RBox^{-n}R$ to the Einstein-Hilbert action. Moreover, in order to get some insight on the meaning of the energy conditions, we illustrate the evolutions of four energy conditions with the model parameter $varepsilon$ for different $n$. By analysis we give the constraints on the model parameters $varepsilon$.
The Universe evolution during the radiation-dominated epoch in the R^2-extended gravity theory is considered. The equations of motion for R and H are solved analytically and numerically. The particle production rate by the oscillating curvature is calculated in one-loop approximation and the back reaction of particle production on the evolution of R is taken into account. Possible implications of the model for cosmological creation of non-thermal dark matter is discussed.
Using a dynamical system approach we study the cosmological phase space of the generalized hybrid metric-Palatini gravity theory, characterized by the function $fleft(R,mathcal Rright)$, where $R$ is the metric scalar curvature and $mathcal R$ the Palatini scalar curvature of the spacetime. We formulate the propagation equations of the suitable dimensionless variables that describe FLRW universes as an autonomous system. The fixed points are obtained for four different forms of the function $fleft(R,mathcal Rright)$, and the behavior of the cosmic scale factor $a(t)$ is computed. We show that due to the structure of the system, no global attractors can be present and also that two different classes of solutions for the scale factor $a(t)$ exist. Numerical integrations of the dynamical system equations are performed with initial conditions consistent with the observations of the cosmological parameters of the present state of the Universe. In addition, using a redefinition of the dynamic variables, we are able to compute interesting solutions for static universes.
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level, where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.