No Arabic abstract
The population of the 9.50 MeV 9/2+ resonance in 13C by single neutron transfer reactions is expected to be dominated by the two-step route through the 12C 2+ (4.44 MeV) state, with another possible contribution via the strongly excited 3- (9.64 MeV) resonance in 12C. However, we find that a good description of the angular distribution for population of this state via the 12C(d,p)13C reaction is only possible when both direct 0+ x g_9/2 and two-step (via the 4.44 MeV 12C 2+ state) 2+ x d_5/2 paths are included in a coupled reaction channel calculation. While the calculated angular distribution is almost insensitive to the presence of the two-step path via the 9.64 MeV 12C 3- resonance, despite a much greater contribution to the wave function from the 3- x f_7/2 configuration, its inclusion is required to fit the details of the experimental angular distribution. The very large interference between the various components of the calculations, even when these are small, arises through the ``kinematic effect associated with the different transfer routes.
Existing measurements of the angular distributions of the ground-state to ground-state transitions of the 12C(d,p)13C and 13C(p,d)12C neutron-transfer reactions have been analyzed systematically using the Johnson-Soper adiabatic and distorted-wave theories. When using a consistent set of physical inputs the deduced spectroscopic factors are consistent to within 20% for incident deuteron energies from 6 to 60 MeV. By contrast, original analyses of many of these data quoted spectroscopic factors that differed by up to a factor of five. The present analysis provides an important reference point from which to assess the requirements of future spectroscopic analyses of transfer reactions measured in inverse kinematics using rare nuclei.
Dissipative 12C+12C reactions at 95 MeV are fully detected in charge with the GARFIELD and RCo apparatuses at LNL. A comparison to a dedicated Hauser-Feshbach calculation allows to select events which correspond, to a large extent, to the statistical evaporation of highly excited 24Mg, as well as to extract information on the isotopic distribution of the evaporation residues in coincidence with their complete evaporation chain. Residual deviations from a statistical behaviour are observed in alpha yields and attributed to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay.
An experimental campaign has been undertaken at INFN Laboratori Nazionali di Legnaro, Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. A first reaction 12C+12C at 7.9 AMeV beam energy has been measured, using the GARFIELD+Ring Counter experimental setup. Fusion-evaporation events have been exclusively selected. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium emission has been evidenced and attributed both to entrance channel effects favoured by the cluster nature of reaction partners and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay. The 24Mg compound nucleus has been studied with a new measurement 14N + 10B at 5.7 AMeV. The comparison between the two datasets would allow us to further constrain the level density of light nuclei. Deviations from a statistical behaviour can be analyzed to get information on nuclear clustering.
We consider forward inclusive production of several quarks in the high energy p-A collisions in the CGC formalism. For three particle production we provide a complete expression in terms of multipole scattering amplitudes on the nucleus and multi particle generalized TMDs of the proton. We then calculate all the terms that are not suppressed by the factor of the area in four particle production, and generalize this result up to terms of order $1/N_c^2$ for arbitrary number of produced particles. Our results include the contribution of quantum interference effects both in the final state radiation (HBT) and in the initial projectile wave function (Pauli blocking).
Multi-step effects between bound, resonant, and non-resonant states have been investigated by the continuum-discretized coupled-channels method (CDCC). In the CDCC, a resonant state is treated as multiple states fragmented in a resonance energy region, although it is described as a single state in usual coupled-channel calculations. For such the fragmented resonant states, one-step and multi-step contributions to the cross sections should be carefully discussed because the cross sections obtained by the one-step calculation depend on the number of those states, which corresponds to the size of the model space. To clarify the role of the multi-step effects, we propose the one-step calculation without model-space dependence for the fragmented resonant states. Furthermore, we also discuss the multi-step effects between the ground, $2^{+}_{1}$ resonant, and non-resonant states in $^6$He for proton inelastic scattering.