Do you want to publish a course? Click here

New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium

69   0   0.0 ( 0 )
 Added by Alain Coc
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. Standard BBN is now a parameter free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background (CMB) radiation. There is a good agreement between the primordial abundances of 4He, D, 3He and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D/H, to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we re-evaluates the D(p,g)3He, D(d,n)3He and D(d,p)3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S-factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D/H = (2.45$pm0.10)times10^{-5}$ (2$sigma$), in agreement with observations.



rate research

Read More

The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by big bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. (2015) used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on Chi-2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. (2016). Here we present a similar analysis for two d+d reactions, d(d,n)3He and d(d,p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.
The metal-poor damped Lyman alpha (DLA) system at z = 3.04984 in the QSO SDSSJ1419+0829 has near-ideal properties for an accurate determination of the primordial abundance of deuterium, (D/H)_p. We have analysed a high-quality spectrum of this object with software specifically designed to deduce the best fitting value of D/H and to assess comprehensively the random and systematic errors affecting this determination. We find (D/H)_DLA = (2.535 +/-0.05) x 10^(-5), which in turn implies Omega_b h^2 = 0.0223 +/- 0.0009, in very good agreement with Omega_b h^2 (CMB) = 0.0222 +/- 0.0004 deduced from the angular power spectrum of the cosmic microwave background. If the value in this DLA is indeed the true (D/H)_p produced by Big-Bang nucleosynthesis (BBN), there may be no need to invoke non-standard physics nor early astration of D to bring together Omega_b h^2 (BBN) and Omega_b h^2 (CMB). The scatter between most of the reported values of (D/H)_p in the literature may be due largely to unaccounted systematic errors and biases. Further progress in this area will require a homogeneous set of data comparable to those reported here and analysed in a self-consistent manner. Such an endeavour, while observationally demanding, has the potential of improving our understanding of BBN physics, including the relevant nuclear reactions, and the subsequent processing of 4He and 7Li through stars.
Recent measurements of the D(p,$gamma)^3$He, nuclear reaction cross-section and of the neutron lifetime, along with the reevaluation of the cosmological baryon abundance from cosmic microwave background (CMB) analysis, call for an update of abundance predictions for light elements produced during the big-bang nucleosynthesis (BBN). While considered as a pillar of the hot big-bang model in its early days, BBN constraining power mostly rests on deuterium abundance. We point out a new $simeq1.8sigma$-tension on the baryonic density, or equivalently on the D/H abundance, between the value inferred on one hand from the analysis of the primordial abundances of light elements and, on the other hand, from the combination of CMB and baryonic oscillation data. This draws the attention on this sector of the theory and gives us the opportunity to reevaluate the status of BBN in the context of precision cosmology. Finally, this paper presents an upgrade of the BBN code PRIMAT.
109 - Ryan Cooke 2013
We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyman-alpha system at z_abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyman alpha transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias), and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)_p = (2.53 +/- 0.04) x 10^-5, corresponding to a Universal baryon density100 Omega_b h^2 = 2.202 +/- 0.046 for the standard model of Big Bang Nucleosynthesis. By combining our measure of (D/H)_p with observations of the cosmic microwave background, we derive the effective number of light fermion species, N_eff = 3.28 +/- 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e. N_eff = 4.046) at 99.3 percent confidence (2.7 sigma), provided that N_eff and the baryon-to-photon ratio (eta_10) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, xi_D = +0.05 +/- 0.13 based only on the CMB+(D/H)_p observations. Combining xi_D with the current best literature measure of Y_p, we find |xi| <= +0.062. In future, improved measurements of several key reaction rates, in particular d(p,gamma)3He, and further measures of (D/H)_p with a precision comparable to those considered here, should allow even more stringent limits to be placed on new physics beyond the standard model.
56 - Ryan Cooke 2017
We report a reanalysis of a near-pristine absorption system, located at a redshift z_abs=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H]=-2.769+/-0.028 (~1/600 of the Solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is log_10(D/H) = -4.622+/-0.015, which is in very good agreement with the results previously reported by Kirkman et al. (2003), but with an improvement on the precision of this single measurement by a factor of ~3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is log_10(D/H)_P = -4.5974+/-0.0052 or, expressed as a linear quantity, (D/H)_P = (2.527+/-0.030)x10^-5; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a BBN calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2 sigma of the latest results from the Planck CMB data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا