Do you want to publish a course? Click here

Magnetic flux concentrations from turbulent stratified convection

213   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English
 Authors P. J. Kapyla




Ask ChatGPT about the research

(abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in the majority of the domain, which is unfavourable for the negative effective magnetic pressure instability (NEMPI). Furthermore, we find that magnetic flux is concentrated in regions of converging flow corresponding to large-scale supergranulation convection pattern. Conclusions: The linear growth of large-scale flux concentrations implies that their dominant formation process is tangling of the large-scale field rather than an instability. One plausible mechanism explaining both the linear growth and the concentrate on of the flux in the regions of converging flow pattern is flux expulsion. Possible reasons for the absence of NEMPI are that the derivative of the effective magnetic pressure with respect to the mean magnetic field has an unfavourable sign and that there may not be sufficient scale separation.



rate research

Read More

130 - Petri J. Kapyla 2018
Small-scale dynamo action is often held responsible for the generation of quiet-Sun magnetic fields. We aim to determine the excitation conditions and saturation level of small-scale dynamos in non-rotating turbulent convection at low magnetic Prandtl numbers. We use high resolution direct numerical simulations of weakly stratified turbulent convection. We find that the critical magnetic Reynolds number for dynamo excitation increases as the magnetic Prandtl number is decreased, which might suggest that small-scale dynamo action is not automatically evident in bodies with small magnetic Prandtl numbers as the Sun. As a function of the magnetic Reynolds number (${rm Rm}$), the growth rate of the dynamo is consistent with an ${rm Rm}^{1/2}$ scaling. No evidence for a logarithmic increase of the growth rate with ${rm Rm}$ is found.
We show how the 3DVAR data assimilation methodology can be used in the astrophysical context of a two-dimensional convection flow. We study the way this variational approach finds best estimates of the current state of the flow from a weighted average of model states and observations. We use numerical simulations to generate synthetic observations of a vertical two-dimensional slice of the outer part of the solar convection zone for varying noise levels and implement 3DVAR when the covariance matrices are scalar. Our simulation results demonstrate the capability of 3DVAR to produce error estimates of system states between up to tree orders of magnitude below the original noise level present in the observations. This work exemplifies the importance of applying data assimilation techniques in simulations of the stratified convection.
148 - A. Brandenburg 2013
Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding the growth rate of this large-scale instability, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached. This results in magnetic spots that are reminiscent of sunspots. Here we want to find out under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. We use a combination of MFS, DNS, and implicit large-eddy simulations to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. We confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using turbulence simulations, we find that magnetic flux concentrations occur for different values of the Mach number between 0.1 and 0.7. DNS and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated.
118 - Maria A. Weber , Yuhong Fan 2015
We study the combined effects of convection and radiative diffusion on the evolution of thin magnetic flux tubes in the solar interior. Radiative diffusion is the primary supplier of heat to convective motions in the lower convection zone, and it results in a heat input per unit volume of magnetic flux tubes that has been ignored by many previous thin flux tube studies. We use a thin flux tube model subject to convection taken from a rotating spherical shell of turbulent, solar-like convection as described by Weber, Fan, and Miesch (2011, Astrophys. J., 741, 11; 2013, Solar Phys., 287, 239), now taking into account the influence of radiative heating on flux tubes of large-scale active regions. Our simulations show that flux tubes of less than or equal to 60 kG subject to solar-like convective flows do not anchor in the overshoot region, but rather drift upward due to the increased buoyancy of the flux tube earlier in its evolution as a result of the inclusion of radiative diffusion. Flux tubes of magnetic field strengths ranging from 15 kG to 100 kG have rise times of less than or equal to 0.2 years, and exhibit a Joys Law tilt-angle trend. Our results suggest that radiative heating is an effective mechanism by which flux tubes can escape from the stably stratified overshoot region, and that flux tubes do not necessarily need to be anchored in the overshoot region to produce emergence properties similar to those of active regions on the Sun.
48 - Y. Iida 2016
The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations upon the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power-law and differ significantly from that of diffusion transport. Furthermore there is a change in the behavior at a spatial scale of 10^{3.8} km. A super-diffusion behavior with an index of 1.4 is found on smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. I interpret this difference in the transport regime as coming from the network-flow pattern.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا