No Arabic abstract
Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding the growth rate of this large-scale instability, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached. This results in magnetic spots that are reminiscent of sunspots. Here we want to find out under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. We use a combination of MFS, DNS, and implicit large-eddy simulations to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. We confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using turbulence simulations, we find that magnetic flux concentrations occur for different values of the Mach number between 0.1 and 0.7. DNS and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated.
A comparison is made between mean-field models and direct numerical simulations of rotating magnetoconvection and the geodynamo. The mean-field coefficients are calculated with the fluid velocity taken from the direct numerical simulations. The magnetic fields resulting from mean-field models are then compared with the mean magnetic field from the direct numerical simulations.
(abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in the majority of the domain, which is unfavourable for the negative effective magnetic pressure instability (NEMPI). Furthermore, we find that magnetic flux is concentrated in regions of converging flow corresponding to large-scale supergranulation convection pattern. Conclusions: The linear growth of large-scale flux concentrations implies that their dominant formation process is tangling of the large-scale field rather than an instability. One plausible mechanism explaining both the linear growth and the concentrate on of the flux in the regions of converging flow pattern is flux expulsion. Possible reasons for the absence of NEMPI are that the derivative of the effective magnetic pressure with respect to the mean magnetic field has an unfavourable sign and that there may not be sufficient scale separation.
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Numerical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this paper, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical field regions of similar strength. This is consistent with the behavior of fast MHD waves.
We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Independent observations were obtained with the SOT/SP onboard the Hinode spacecraft and with the TIP-2 mounted at the VTT. We apply state-of-the-art inversion techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient. In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e.,the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations, we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. MHD simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. Both in the observations and simulation negative gradients of the magnetic field vs. optical depth dominate at some radial distances in the penumbra. The negative gradient with respect to optical depth in the inner penumbrae persists even after averaging in the azimuthal direction, both in the observations and, to a lesser extent, also in MHD simulations. We interpret the observed localized presence of the negative vertical gradient of the magnetic field strength in the observations as a consequence of stronger field from spines expanding with height and closing above the weaker field inter-spines. The presence of the negative gradients with respect to optical depth after azimuthal averaging can be explained by two different mechanisms: the high corrugation of equal optical depth surfaces and the cancellation of polarized signal due to the presence of unresolved opposite polarity patches in the deeper layers of the penumbra.
Seven-year long seeing-free observations of solar magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to study the sources of the solar mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the solar disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (B_W), intermediate (B_I), and strong (B_S) fields. The B_W component represents areas with magnetic flux densities below the chosen threshold; the B_I component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The B_S component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that: i) when the threshold level of 30 Mx cm^-2 is applied, the B_I and B_S components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2-6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx cm^-2, the contribution from B_I+B_S grows to 98%, and the fraction of the occupied area reaches the value of about 40% of the solar disk. In summary, we found that regardless of the threshold level, only a small part of the solar disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent, inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the solar surface are the source of the SMMF may need to be reconsidered.