Do you want to publish a course? Click here

Hierarchical Recurrent Neural Encoder for Video Representation with Application to Captioning

74   0   0.0 ( 0 )
 Added by Zhongwen Xu
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Recently, deep learning approach, especially deep Convolutional Neural Networks (ConvNets), have achieved overwhelming accuracy with fast processing speed for image classification. Incorporating temporal structure with deep ConvNets for video representation becomes a fundamental problem for video content analysis. In this paper, we propose a new approach, namely Hierarchical Recurrent Neural Encoder (HRNE), to exploit temporal information of videos. Compared to recent video representation inference approaches, this paper makes the following three contributions. First, our HRNE is able to efficiently exploit video temporal structure in a longer range by reducing the length of input information flow, and compositing multiple consecutive inputs at a higher level. Second, computation operations are significantly lessened while attaining more non-linearity. Third, HRNE is able to uncover temporal transitions between frame chunks with different granularities, i.e., it can model the temporal transitions between frames as well as the transitions between segments. We apply the new method to video captioning where temporal information plays a crucial role. Experiments demonstrate that our method outperforms the state-of-the-art on video captioning benchmarks. Notably, even using a single network with only RGB stream as input, HRNE beats all the recent systems which combine multiple inputs, such as RGB ConvNet plus 3D ConvNet.



rate research

Read More

With the rapid growth of video data and the increasing demands of various applications such as intelligent video search and assistance toward visually-impaired people, video captioning task has received a lot of attention recently in computer vision and natural language processing fields. The state-of-the-art video captioning methods focus more on encoding the temporal information, while lack of effective ways to remove irrelevant temporal information and also neglecting the spatial details. However, the current RNN encoding module in single time order can be influenced by the irrelevant temporal information, especially the irrelevant temporal information is at the beginning of the encoding. In addition, neglecting spatial information will lead to the relationship confusion of the words and detailed loss. Therefore, in this paper, we propose a novel recurrent video encoding method and a novel visual spatial feature for the video captioning task. The recurrent encoding module encodes the video twice with the predicted key frame to avoid the irrelevant temporal information often occurring at the beginning and the end of a video. The novel spatial features represent the spatial information in different regions of a video and enrich the details of a caption. Experiments on two benchmark datasets show superior performance of the proposed method.
98 - Aming Wu , Yahong Han 2020
Recent advances of video captioning often employ a recurrent neural network (RNN) as the decoder. However, RNN is prone to diluting long-term information. Recent works have demonstrated memory network (MemNet) has the advantage of storing long-term information. However, as the decoder, it has not been well exploited for video captioning. The reason partially comes from the difficulty of sequence decoding with MemNet. Instead of the common practice, i.e., sequence decoding with RNN, in this paper, we devise a novel memory decoder for video captioning. Concretely, after obtaining representation of each frame through a pre-trained network, we first fuse the visual and lexical information. Then, at each time step, we construct a multi-layer MemNet-based decoder, i.e., in each layer, we employ a memory set to store previous information and an attention mechanism to select the information related to the current input. Thus, this decoder avoids the dilution of long-term information. And the multi-layer architecture is helpful for capturing dependencies between frames and word sequences. Experimental results show that even without the encoding network, our decoder still could obtain competitive performance and outperform the performance of RNN decoder. Furthermore, compared with one-layer RNN decoder, our decoder has fewer parameters.
The explosion of video data on the internet requires effective and efficient technology to generate captions automatically for people who are not able to watch the videos. Despite the great progress of video captioning research, particularly on video feature encoding, the language decoder is still largely based on the prevailing RNN decoder such as LSTM, which tends to prefer the frequent word that aligns with the video. In this paper, we propose a boundary-aware hierarchical language decoder for video captioning, which consists of a high-level GRU based language decoder, working as a global (caption-level) language model, and a low-level GRU based language decoder, working as a local (phrase-level) language model. Most importantly, we introduce a binary gate into the low-level GRU language decoder to detect the language boundaries. Together with other advanced components including joint video prediction, shared soft attention, and boundary-aware video encoding, our integrated video captioning framework can discover hierarchical language information and distinguish the subject and the object in a sentence, which are usually confusing during the language generation. Extensive experiments on two widely-used video captioning datasets, MSR-Video-to-Text (MSR-VTT) cite{xu2016msr} and YouTube-to-Text (MSVD) cite{chen2011collecting} show that our method is highly competitive, compared with the state-of-the-art methods.
The past few years have witnessed increasing interests in applying deep learning to video compression. However, the existing approaches compress a video frame with only a few number of reference frames, which limits their ability to fully exploit the temporal correlation among video frames. To overcome this shortcoming, this paper proposes a Recurrent Learned Video Compression (RLVC) approach with the Recurrent Auto-Encoder (RAE) and Recurrent Probability Model (RPM). Specifically, the RAE employs recurrent cells in both the encoder and decoder. As such, the temporal information in a large range of frames can be used for generating latent representations and reconstructing compressed outputs. Furthermore, the proposed RPM network recurrently estimates the Probability Mass Function (PMF) of the latent representation, conditioned on the distribution of previous latent representations. Due to the correlation among consecutive frames, the conditional cross entropy can be lower than the independent cross entropy, thus reducing the bit-rate. The experiments show that our approach achieves the state-of-the-art learned video compression performance in terms of both PSNR and MS-SSIM. Moreover, our approach outperforms the default Low-Delay P (LDP) setting of x265 on PSNR, and also has better performance on MS-SSIM than the SSIM-tuned x265 and the slowest setting of x265. The codes are available at https://github.com/RenYang-home/RLVC.git.
Identifying a short segment in a long video that semantically matches a text query is a challenging task that has important application potentials in language-based video search, browsing, and navigation. Typical retrieval systems respond to a query with either a whole video or a pre-defined video segment, but it is challenging to localize undefined segments in untrimmed and unsegmented videos where exhaustively searching over all possible segments is intractable. The outstanding challenge is that the representation of a video must account for different levels of granularity in the temporal domain. To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-grained frame level to extract information at different scales based on multiple subtasks, namely, video retrieval, segment temporal localization, and masked language modeling. We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets. Our approach outperforms the previous methods as well as strong baselines, establishing new state-of-the-art for this task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا