Do you want to publish a course? Click here

Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7

265   0   0.0 ( 0 )
 Added by Vivek Kumar Anand
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present synchrotron x-ray diffraction, neutron powder diffraction and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) mu_B/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 mu_B/Nd for the local <111> Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The strong Ising anisotropy is further confirmed by the inelastic neutron scattering data which reveals a well-isolated dipolar-octupolar type Kramers doublet ground state. The crystal field level scheme and ground state wavefunction have been determined.



rate research

Read More

We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd$_2$Zr$_2$O$_7$. Powder x-ray diffraction analysis confirms that Nd$_2$Zr$_2$O$_7$ adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111> axes of the Nd$^{3+}$ ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below $Tsim7$ K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.
324 - Surjeet Singh 2007
We have successfully grown cm3-size single crystals of the metallic-ferromagnet Sm2Mo2O7 by the floating-zone method using an infrared-red image furnace. The growth difficulties and the remedies found using a 2-mirror image furnace are discussed. Magnetization studies along the three crystalline axes of the compound are presented and discussed based on our recent proposal of an ordered spin-ice ground state for this compound
We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic directions $[001], [1bar{1}0]$ and $[111]$, the refined field induced magnetic structures are derived from the zero field $psi_2$ and $psi_3$ states of the $Gamma_5$ irreducible representation which describes the ground state of XY pyrochlore antiferromagnets. At low field, domain selection effects are systematically at play. In addition, for $[001]$, a phase transition is reported towards a $psi_3$ structure at a characteristic field $H_c^{001}=$ 43 mT. For $[1bar{1}0]$ and $[111]$, the spins are continuously tilted by the field from the $psi_2$ state, and no phase transition is found while domain selection gives rise to sharp anomalies in the field dependence of the Bragg peaks intensity. For $[1bar{1}0]$, these results are confirmed by high resolution inelastic neutron scattering experiments, which in addition allow us to determine the field dependence of the spin gap. This study agrees qualitatively with the scenario proposed theoretically by Maryasin {it et al.} [Phys. Rev. B {bf 93}, 100406(R) (2016)], yet the strength of the field induced anisotropies is significantly different from theory.
In spinels ACr2O4 (A=Mg, Zn) realisation of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et. al (Pow. Diff. 17, 230( 2002)), while other features depend on sample or cooling protocol. Complex partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0), k2=(1 0 1/2) appear. The ordered moment reaches 1.94(3) muB/Cr3+ for k1 and 2.08(3) muB/Cr3+ for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1-10] diagonals and a smaller c-component. By inelastic neutron scattering we investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of cluster-like excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
267 - T. Haku , M. Soda , M. Sera 2015
Inelastic neutron scattering measurement is performed on a breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11. The observed dispersionless excitations are explained by a crystalline electric field (CEF) Hamiltonian of Kramers ion Yb3+ of which the local symmetry exhibits C3v point group symmetry. The magnetic susceptibility previously reported is consistently reproduced by the energy scheme of the CEF excitations. The obtained wave functions of the ground state Kramers doublet exhibit the planer-type anisotropy. The result demonstrates that Ba3Yb2Zn5O11 is an experimental realization of breathing pyrochlore antiferromagnet with a pseudospin S = 1/2 having easy-plane anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا