No Arabic abstract
Inelastic neutron scattering measurement is performed on a breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11. The observed dispersionless excitations are explained by a crystalline electric field (CEF) Hamiltonian of Kramers ion Yb3+ of which the local symmetry exhibits C3v point group symmetry. The magnetic susceptibility previously reported is consistently reproduced by the energy scheme of the CEF excitations. The obtained wave functions of the ground state Kramers doublet exhibit the planer-type anisotropy. The result demonstrates that Ba3Yb2Zn5O11 is an experimental realization of breathing pyrochlore antiferromagnet with a pseudospin S = 1/2 having easy-plane anisotropy.
The low energy spin excitation spectrum of the breathing pyrochlore Ba3Yb2Zn5O11 has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. To gain deeper insight, a theoretical model of isolated Yb3+ tetrahedra parametrized by four anisotropic exchange constants is constructed. The model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. The fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of inter-tetrahedron correlations.
Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. An attractive route to control magnetism with strain is provided by the piezomagnetic effect, whereby the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially attractive because unlike magnetostriction it couples strain and magnetization at linear order, and allows for bi-directional control suitable for memory and spintronics applications. However, its use in functional devices has so far been hindered by the slow speed and large uniaxial strains required. Here, we show that the essential features of piezomagnetism can be reproduced with optical phonons alone, which can be driven by light to large amplitudes without changing the volume and hence beyond the elastic limits of the material. We exploit nonlinear, three-phonon mixing to induce the desired crystal field distortions in the antiferromagnet CoF$_2$. Through this effect, we generate a ferrimagnetic moment of 0.2 $mu_B$ per unit cell, nearly three orders of magnitude larger than achieved with mechanical strain.
Directly measuring elementary electronic excitations in dopant $3d$ metals is essential to understanding how they function as part of their host material. Through calculated crystal field splittings of the $3d$ electron band it is shown how transition metals Mn, Fe, Co, and Ni are incorporated into SnO$_2$. The crystal field splittings are compared to resonant inelastic x-ray scattering (RIXS) experiments, which measure precisely these elementary $dd$ excitations. The origin of spectral features can be determined and identified via this comparison, leading to an increased understanding of how such dopant metals situate themselves in, and modify the hosts electronic and magnetic properties; and also how each element differs when incorporated into other semiconducting materials. We found that oxygen vacancy formation must not occur at nearest neighbour sites to metal atoms, but instead must reside at least two coordination spheres beyond. The coordination of the dopants within the host can then be explicitly related to the $d$-electron configurations and energies. This approach facilitates an understanding of the essential link between local crystal coordination and electronic/magnetic properties.
We describe the crystal structure and elementary magnetic properties of a previously unreported ternary intermetallic compound, Cr4PtGa17, which crystallizes in a rhombohedral unit cell in the noncentrosymmetric space group R3m. The crystal structure is closely related to those of XYZ half-Heusler compounds, where X, Y and Z are reported to be single elements only, occupying three different face-centered cubic sublattices. The new material, Cr4PtGa17, can be most straightforwardly illustrated by writing the formula as (PtGa2)(Cr4Ga14)Ga (X=PtGa2, Y = Cr4Ga14, Z = Ga), that is, the X and Y sites are occupied by clusters instead of single elements. The magnetic Cr occupies a breathing pyrochlore lattice. Ferromagnetic ordering is found below TC ~61 K, by both neutron diffraction and magnetometer studies, with a small, saturated moment of ~0.25 muB/Cr observed at 2 K, making Cr4PtGa17 the first ferromagnetically ordered material with a breathing pyrochlore lattice. A magnetoresistance of ~140% was observed at 2 K. DFT calculations suggest that the material has a nearly-half-metallic electronic structure. The new material, Cr4PtGa17, the first realization of both a half-Heusler-type structure and a breathing pyrochlore lattice, might pave a new way to achieve novel types of half-Heusler compounds.
Rare-earth pyrochlores are known to exhibit exotic magnetic phenomena. We report a study of crystal growth and characterizations of a new rare-earth compound Er$_2$AlSbO$_7$, in which Al$^{3+}$ and Sb$^{5+}$ ions share the same positions with a random distribution. The magnetism are studied by magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures down to several tens of milli-kelvin. Different from the other reported Er-based pyrochlores exhibiting distinct magnetically ordered states, a spin-freezing transition is detected in Er$_2$AlSbO$_7$ below 0.37 K, which is primarily ascribed to the inherent structural disorder. A cluster spin-glass state is proposed in view of the frequency dependence of the peak position in the ac susceptibility. In addition, the temperature and field dependence of thermal conductivity indicates rather strong spin fluctuations which is probably due to the phase competition.