Do you want to publish a course? Click here

Four-lepton production from photon-induced reactions in $pp$ collisions at the LHC

71   0   0.0 ( 0 )
 Added by Laurent Schoeffel
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The cross sections for the reaction $gammagammarightarrow 4ell$ in proton--proton collisions are calculated at the LHC energies. We show that the purely electroweak process $gammagammarightarrow 4ell$ can be studied at the LHC and can constitute a background to other processes with $4ell$ or $2ell$ final states.



rate research

Read More

In this letter we estimate the contribution of the double diffractive processes for the diphoton production in $pp$ collisions at the Large Hadron Collider (LHC). The acceptance of the central and forward LHC detectors is taken into account and predictions for the invariant mass, rapidity and, transverse momentum distributions are presented. A comparison with the predictions for the Light -- by -- Light (LbL) scattering and exclusive diphoton production is performed. We demonstrate that the events associated to double diffractive processes can be separated and its study can be used to constrain the behavior of the diffractive parton distribution functions.
Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extrapolated to LHC energy. Particular attention is paid to demonstrate that the chemical decoupling temperature is independent of the system size. In the energy regime investigated so far, strangeness production in pp interactions is strongly influenced by the canonical suppression effects. At LHC energies, this influence might be reduced. Particle ratios with particular sensitivity to canonical effects are indicated. Secondly, the relation between the strangeness production and the charged-particle multiplicity in pp interactions is investigated. In this context the multiplicity dependence studied at Tevatron is of particular interest. There, the trend in relative strangeness production known from centrality dependent heavy-ion collisions is not seen in multiplicity selected pp interactions. However, the conclusion from the Tevatron measurements is based on rather limited data samples with low statistics and number of observables. We argue, that there is an absolute need at LHC to measure strangeness production in events with different multiplicities to possibly disentangle relations and differences between particle production in pp and heavy-ion collisions.
The production of charmed and beauty baryons in proton-proton collisions at high energies is analyzed within the modified quark-gluon string model. We present some predictions for the experiments on the forward beauty baryon production in pp collisions at LHC energies. This analysis allows us to find useful information on the Regge trajectories of the heavy (b barb) mesons and the sea beauty quark distributions in the proton.
In this paper we investigate the $eta_c$ production by photon - photon and photon - hadron interactions in $pp$ and $pA$ collisions at the LHC energies. The inclusive and diffractive contributions for the $eta_c$ photoproduction are estimated using the nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the $eta_c$ photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive $eta_c$ photoproduction, which is a direct probe of the Odderon, also is presented.
We have performed a systematic study of $J/psi$ and $psi(2S)$ production in $p-p$ collisions at different LHC energies and at different rapidities using the leading order (LO) non-relativistic QCD (NRQCD) model of heavy quarkonium production. We have included the contributions from $chi_{cJ}$ ($J$ = 0, 1, 2) and $psi(2S)$ decays to $J/psi$. The calculated values have been compared with the available data from the four experiments at LHC namely, ALICE, ATLAS, CMS and LHCb. In case of ALICE, inclusive $J/psi$ and $psi(2S)$ cross-sections have been calculated by including the feed-down from $B$ meson using Fixed-Order Next-to-Leading Logarithm (FONLL) formalism. It is found that all the experimental cross-sections are well reproduced for $p_T >$ 4 GeV within the theoretical uncertainties arising due to the choice of the factorization scale. We also predict the transverse momentum distributions of $J/psi$ and $psi(2S)$ both for the direct and feed-down processes at the upcoming LHC energies of $sqrt{s} =$ 5.1 TeV and 13 TeV for the year 2015.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا