Do you want to publish a course? Click here

Bouncing motion and penetration dynamics in multicomponent Bose-Einstein condensates

257   0   0.0 ( 0 )
 Added by Yujiro Eto
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate dynamic properties of bouncing and penetration in colliding binary and ternary Bose-Einstein condensates comprised of different Zeeman or hyperfine states of 87Rb. Through the application of magnetic field gradient pulses, two- or three-component condensates in an optical trap are spatially separated and then made to collide. The subsequent evolutions are classified into two categories: repeated bouncing motion and mutual penetration after damped bounces. We experimentally observed mutual penetration for immiscible condensates, bouncing between miscible condensates, and domain formation for miscible condensates. From numerical simulations of the Gross-Pitaevskii equation, we find that the penetration time can be tuned by slightly changing the atomic interaction strengths.



rate research

Read More

For the observation of Bose-Einstein condensation, excitons in cuprous oxide are regarded as promising candidates due to their large binding energy and long lifetime. High particle densities may be achieved by entrapment in a stress induced potential. We consider a multi-component gas of interacting para- and orthoexcitons in cuprous oxide confined in a three-dimensional potential trap. Based on the Hartree-Fock-Bogoliubov theory, we calculate density profiles as well as decay luminescence spectra which exhibit signatures of the separation of the Bose-condensed phases.
149 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
Recent experiments on Bose--Einstein condensates in optical cavities have reported a quantum phase transition to a coherent state of the matter-light system -- superradiance. The time dependent nature of these experiments demands consideration of collective dynamics. Here we establish a rich phase diagram, accessible by quench experiments, with distinct regimes of dynamics separated by non-equilibrium phase transitions. We include the key effects of cavity leakage and the back-reaction of the cavity field on the condensate. Proximity to some of these phase boundaries results in critical slowing down of the decay of many-body oscillations. Notably, this slow decay can be assisted by large cavity losses. Predictions include the frequency of collective oscillations, a variety of multi-phase co-existence regions, and persistent optomechanical oscillations described by a damped driven pendulum. These findings open new directions to study collective dynamics and non-equilibrium phase transitions in matter-light systems.
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter, based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible regime, with collisions becoming only important in the long time evolution.
124 - Pengfei Zhang , Yingfei Gu 2020
We study the quantum dynamics of Bose-Einstein condensates when the scattering length is modulated periodically or quasi-periodically in time within the Bogoliubov framework. For the periodically driven case, we consider two protocols where the modulation is a square-wave or a sine-wave. In both protocols for each fixed momentum, there are heating and non-heating phases, and a phase boundary between them. The two phases are distinguished by whether the number of excited particles grows exponentially or not. For the quasi-periodically driven case, we again consider two protocols: the square-wave quasi-periodicity, where the excitations are generated for almost all parameters as an analog of the Fibonacci-type quasi-crystal; and the sine-wave quasi-periodicity, where there is a finite measure parameter regime for the non-heating phase. We also plot the analogs of the Hofstadter butterfly for both protocols.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا