Do you want to publish a course? Click here

Theoretical and observational constraints of viable f(R) theories of gravity

99   0   0.0 ( 0 )
 Added by Sulona Kandhai Miss
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modified gravity has attracted much attention over the last few years and remains a potential candidate for dark energy. In particular, the so-called viable f(R) gravity theories, which are able to both recover General Relativity (GR) and produce late-time cosmic acceleration, have been widely studied in recent literature. Nevertheless, extended theories of gravity suffer from several shortcomings which compromise their ability to provide realistic alternatives to the standard cosmological Lambda CDM Concordance model. We address the existence of cosmological singularities and the conditions that guarantee late-time acceleration,assuming reasonable energy conditions for standard matter in the so-called Hu-Sawicki f(R) model, currently among the most widely studied modifications to General Relativity. Then using the Supernovae Ia Union 2.1 catalogue, we further constrain the free parameters of this model. The combined analysis of both theoretical and observational constraints sheds some light on the viable parameter space of these models and the form of the underlying effective theory of gravity.



rate research

Read More

A complete analysis of the dynamics of the Hu-Sawicki modification to General Relativity is presented. In particular, the full phase-space is given for the case in which the model parameters are taken to be n=1, c1=1, and several stable de Sitter equilibrium points together with an unstable matter-like point are identified. We find that if the cosmological parameters are chosen to take on their Lambda CDM values today, this results in a universe which, until very low redshifts, is dominated by an equation of state parameter equal t1/3, leading to an expansion history very different from Lambda CDM. We demonstrate that this problem can be resolved by choosing Lambda CDM initial conditions at high redshifts and integrating the equations to the present day.
130 - Diego Saez-Gomez 2012
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level, where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.
We focus on a series of $f(R)$ gravity theories in Palatini formalism to investigate the probabilities of producing the late-time acceleration for the flat Friedmann-Robertson-Walker (FRW) universe. We apply statefinder diagnostic to these cosmological models for chosen series of parameters to see if they distinguish from one another. The diagnostic involves the statefinder pair ${r,s}$, where $r$ is derived from the scale factor $a$ and its higher derivatives with respect to the cosmic time $t$, and $s$ is expressed by $r$ and the deceleration parameter $q$. In conclusion, we find that although two types of $f(R)$ theories: (i) $f(R) = R + alpha R^m - beta R^{-n}$ and (ii) $f(R) = R + alpha ln R - beta$ can lead to late-time acceleration, their evolutionary trajectories in the $r-s$ and $r-q$ planes reveal different evolutionary properties, which certainly justify the merits of statefinder diagnostic. Additionally, we utilize the observational Hubble parameter data (OHD) to constrain these models of $f(R)$ gravity. As a result, except for $m=n=1/2$ of (i) case, $alpha=0$ of (i) case and (ii) case allow $Lambda$CDM model to exist in 1$sigma$ confidence region. After adopting statefinder diagnostic to the best-fit models, we find that all the best-fit models are capable of going through deceleration/acceleration transition stage with late-time acceleration epoch, and all these models turn to de-Sitter point (${r,s}={1,0}$) in the future. Also, the evolutionary differences between these models are distinct, especially in $r-s$ plane, which makes the statefinder diagnostic more reliable in discriminating cosmological models.
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci scalar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar coupling $Q$ with matter works to change the star radius in comparison to General Relativity, while the maximum allowed mass of neutron stars is hardly modified for both SLy and FPS equations of state. In Brans-Dicke theory with the massive potential $V(phi)=m^2 phi^2/2$, where $m^2$ is a positive constant, we show the difficulty of realizing neutron star solutions with a stable field profile due to the existence of an exponentially growing mode outside the star. As in $f(R)$ gravity with the $R^2$ term, this property is related to the requirement of extra boundary conditions of the field at the surface of star. For the self-coupling potential $V(phi)=lambda phi^4/4$, this problem can be circumvented by the fact that the second derivative $V_{,phi phi}=3lambdaphi^2$ approaches 0 at spatial infinity. In this case, we numerically show the existence of neutron star solutions for both SLy and FPS equations of state and discuss how the mass-radius relation is modified as compared to General Relativity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا