Do you want to publish a course? Click here

Measurement of $theta_{13}$ in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

211   0   0.0 ( 0 )
 Added by Masaki Ishitsuka
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Double Chooz collaboration presents a measurement of the neutrino mixing angle $theta_{13}$ using reactor $overline{ u}_{e}$ observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respect to our previous publication by a multi-variate analysis. These improvements demonstrate the capability of precise measurement of reactor $overline{ u}_{e}$ without gadolinium loading. Spectral distortions from the $overline{ u}_{e}$ reactor flux predictions previously reported with the neutron capture on gadolinium events are confirmed in the independent data sample presented here. A value of $sin^{2}2theta_{13} = 0.095^{+0.038}_{-0.039}$(stat+syst) is obtained from a fit to the observed event rate as a function of the reactor power, a method insensitive to the energy spectrum shape. A simultaneous fit of the hydrogen capture events and of the gadolinium capture events yields a measurement of $sin^{2}2theta_{13} = 0.088pm0.033$(stat+syst).



rate research

Read More

The establishment of the neutrino oscillations phenomenon as a solution to both solar and atmospheric neutrino anomalies had two consequences: a new oscillation mode, labelled $mathbf{theta_{13}}$, and the possibility to observe CP violation, if $mathbf{theta_{13}}$ was sizeable. CP violation implies that neutrino oscillations behave differently for neutrinos and anti-neutrinos -- a rare fundamental phenomenon key for our understanding of the Universe. The experimental demonstration of $mathbf{theta_{13}}$ has aided the completion of a quest lasting half a century. The best $mathbf{theta_{13}}$ knowledge is today inferred from high-precision reactor neutrino disappearance. The Double Chooz (DC) experiment has played a pioneering role in this channel by providing the first positive evidence, in 2011, in combination with the T2K experiment appearance data. The establishment of $mathbf{theta_{13}}$ awaited the Daya Bay experiments observation in 2012; confirmed soon after by the RENO experiment. Todays best knowledge on $mathbf{theta_{13}}$ from reactor experiments is a key input to many neutrino experiments. Here DC reports its first multi-detector $mathbf{theta_{13}}$ measurement exploiting several unprecedented techniques for a major precision improvement.
The oscillation results published by the Double Chooz collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle $theta_{13}$ by including 7.53 days of reactor-off data. A global fit of the observed neutrino rates for different reactor power conditions is performed, yielding a measurement of both $theta_{13}$ and the total background rate. The results on the mixing angle are improved significantly by including the reactor-off data in the fit, as it provides a direct measurement of the total background rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on both Gd and H, whose combination yields $sin^2(2theta_{13})=$ 0.102 $pm$ 0.028(stat.) $pm$ 0.033(syst.). The results presented in this study are fully consistent with the ones already published by Double Chooz, achieving a competitive precision. They provide, for the first time, a determination of $theta_{13}$ that does not depend on a background model.
This article reports an improved independent measurement of neutrino mixing angle $theta_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $beta$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced $^9$Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded $sin^22theta_{13} = 0.071 pm 0.011$ in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.
The Double Chooz experiment presents improved measurements of the neutrino mixing angle $theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $bar u_{e}$ signal has increased. The value of $theta_{13}$ is measured to be $sin^{2}2theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $bar u_{e}$ prediction observed above a prompt signal energy of 4 MeV and possible explanations are also reported. A consistent value of $theta_{13}$ is obtained from a fit to the observed rate as a function of the reactor power independently of the spectrum shape and background estimation, demonstrating the robustness of the $theta_{13}$ measurement despite the observed distortion.
A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at $sim$120 and $sim$300 m.w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed to measure the muon flux reaching both detectors to be (3.64 $pm$ 0.04) $times$ 10$^{-4}$ cm$^{-2}$s$^{-1}$ for the near detector and (7.00 $pm$ 0.05) $times$ 10$^{-5}$ cm$^{-2}$s$^{-1}$ for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of $alpha_{T}$ = 0.212 $pm$ 0.024 and 0.355 $pm$ 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا