Do you want to publish a course? Click here

NIR spectroscopy of the Sun and HD20010 - Compiling a new linelist in the NIR

206   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Effective temperature, surface gravity, and metallicity are basic spectroscopic stellar parameters necessary to characterize a star or a planetary system. Reliable atmospheric parameters for FGK stars have been obtained mostly from methods that relay on high resolution and high signal-to-noise optical spectroscopy. The advent of a new generation of high resolution near-IR spectrographs opens the possibility of using classic spectroscopic methods with high resolution and high signal-to-noise in the NIR spectral window. Aims: We aim to compile a new iron line list in the NIR from a solar spectrum to derive precise stellar atmospheric parameters, comparable to the ones already obtained from high resolution optical spectra. The spectral range covers 10 000 {AA} to 25 000 {AA}, which is equivalent to the Y, J, H, and K bands. Methods: Our spectroscopic analysis is based on the iron excitation and ionization balance done in LTE. We use a high resolution and high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as a starting point to compile the iron line list. The oscillator strengths (log gf) of the iron lines were calibrated for the Sun. The abundance analysis was done using the MOOG code after measuring equivalent widths of 357 solar iron lines. Results: We successfully derived stellar atmospheric parameters for the Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived stellar atmospheric parameters using the same line list as for the Sun. The spectrum was obtained from the CRIRES- POP database. The results are compatible with the ones found in the literature, confirming the reliability of our line list. However, due to the quality of the data we obtain large errors.



rate research

Read More

208 - L. Inno 2012
We present the largest near-infrared (NIR) data sets, $JHKs$, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical $VI$ photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW) relations are linear over the entire period range ($0.0<log P_{rm FU} le1.65 $) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of $18.45pm0.02{rm(random)}pm0.10{rm(systematic)}$ mag (LMC) and $18.93pm0.02{rm(random)}pm0.10{rm(systematic)}$ mag (SMC). These estimates are the weighted mean over ten PW relations and the systematic errors account for uncertainties in the zero-point and in the reddening law. We found similar distances using FO Cepheids ($18.60pm0.03{rm(random)}pm0.10{rm(systematic)}$ mag [LMC] and $19.12pm0.03{rm(random)}pm0.10{rm(systematic)}$ mag [SMC]). These new MC distances lead to the relative distance, $Deltamu=0.48pm0.03$ mag (FU, $log P=1$) and $Deltamu=0.52pm0.03$ mag (FO, $log P=0.5$),which agrees quite well with previous estimates based on robust distance indicators.
107 - L. Inno 2014
We present new near-infrared (NIR) light-curve templates for fundamental (FU, JHK) and first overtone (FO, J) Cepheids. The new templates together with PL and PW relations provide Cepheid distances from single-epoch observations with a precision only limited by the intrinsic accuracy of the method adopted. The templates rely on a very large set of Galactic and Magellanic Clouds (MCs) Cepheids (FU,~600; FO,~200) with well sampled NIR (IRSF data) and optical (V,I; OGLE data) light curves. To properly trace the change in the shape of the light curve as a function of period, we split the sample of calibrating Cepheids into 10 different period bins. The templates for the first time cover FO Cepheids and the FU short-period Cepheids (P<5 days). Moreover, the zero-point phase is anchored to the phase of the mean magnitude along the rising branch. The new approach has several advantages in sampling the light curve of bump Cepheids when compared with the phase of maximum light. We also provide new estimates of the NIR-to-optical amplitude ratios for FU and FO Cepheids. We perform detailed analytical fits using both 7th-order Fourier series and multi-Gaussian periodic functions. The latter are characterized by a smaller number of free parameters (9 vs 15). Mean NIR magnitudes based on the new templates are up to 80% more accurate than single-epoch measurements and up to 50% more accurate than mean magnitudes based on previous templates, with typical associated uncertainties ranging from 0.015 mag (J) to 0.019 mag (K). Moreover, the errors on individual distances of Small MC Cepheids derived from NIR PW relations, are essentially reduced to the intrinsic scatter of the adopted relations. Thus, the new templates are the ultimate tool to estimate precise Cepheid distances from NIR single-epoch observations, which can be adopted to derive the 3D structure of the MCs.
We investigate the K and L band dayside emission of the hot-Jupiter HD 189733b with three nights of secondary eclipse data obtained with the SpeX instrument on the NASA IRTF. The observations for each of these three nights use equivalent instrument settings and the data from one of the nights has previously reported by Swain et al (2010). We describe an improved data analysis method that, in conjunction with the multi-night data set, allows increased spectral resolution (R~175) leading to high-confidence identification of spectral features. We confirm the previously reported strong emission at ~3.3 microns and, by assuming a 5% vibrational temperature excess for methane, we show that non-LTE emission from the methane nu3 branch is a physically plausible source of this emission. We consider two possible energy sources that could power non-LTE emission and additional modelling is needed to obtain a detailed understanding of the physics of the emission mechanism. The validity of the data analysis method and the presence of strong 3.3 microns emission is independently confirmed by simultaneous, long-slit, L band spectroscopy of HD 189733b and a comparison star.
The relative roles of metallicity and surface gravity on the near-infrared spectra of late-T brown dwarfs are not yet fully understood, and evolutionary models still need to be calibrated in order to provide accurate estimates of brown dwarf physical parameters from measured spectra. The T-type brown dwarfs Eps Indi Ba and Bb forming the tightly bound binary Eps Indi B, which orbits the K4V star Eps Indi A, are nowadays the only such benchmark T dwarfs for which all important physical parameters such as metallicity, age and mass are (or soon will be) known. We present spatially resolved VLT/NACO images and low resolution spectra of Eps Indi B in the J, H and K near-infrared bands. The spectral types of Eps Indi Ba and Bb are determined by direct comparison of the flux-calibrated JHK spectra with T dwarf standard template spectra and also by NIR spectral indices. Eps Indi Bb is confirmed as a T6 while the spectral type of Eps Indi Ba is T1.5 so somewhat later than the previously reported T1. Constrained values for surface gravity and effective temperature are derived by comparison with model spectra. The evolutionary models predict masses around about 53 M_J for Eps Indi Ba and about 34 M_J for Eps Indi Bb, slightly higher than previously reported values. The suppressed J-band and enhanced K-band flux of Eps Indi Ba indicates that a noticeable cloud layer is still present in a T1.5 dwarf while no clouds are needed to model the spectrum of Eps Indi Bb.
We report high resolution NIR spectroscopy of CO and OH emission from the Herbig Be star HD100546. We discuss how our results bear striking resemblance to several theoretically predicted signposts of giant planet formation. The properties of the CO and OH emission lines are consistent with our earlier interpretation that these diagnostics provide indirect evidence for a companion that orbits the star close to the disk wall (at ~13au). The asymmetry of the OH spectral line profiles and their lack of time variability are consistent with emission from gas in an eccentric orbit at the disk wall that is approximately stationary in the inertial frame. The time variable spectroastrometric properties of the CO v=1-0 emission line point to an orbiting source of CO emission with an emitting area similar to that expected for a circumplanetary disk (~0.1au^2) assuming the CO emission is optically thick. We also consider a counterhypothesis to this interpretation, namely that the variable CO emission arises from a bright spot on the disk wall. We conclude with a brief suggestion of further work that can distinguish between these scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا