No Arabic abstract
We formulate the deformation theory for instantons on nearly Kahler six-manifolds using spinors and Dirac operators. Using this framework we identify the space of deformations of an irreducible instanton with semisimple structure group with the kernel of an elliptic operator, and prove that abelian instantons are rigid. As an application, we show that the canonical connection on three of the four homogeneous nearly Kahler six-manifolds G/H is a rigid instanton with structure group H. In contrast, these connections admit large spaces of deformations when regarded as instantons on the tangent bundle with structure group SU(3).
In this article, we show that a hypersurface of the nearly Kahler $CP^3$ or $F_{1,2}$ cannot have its shape operator and induced almost contact structure commute together. This settles the question for six-dimensional homogeneous nearly Kahler manifolds, as the cases of $S^6$ and $S^3 times S^3$ were previously solved, and provides a counterpart to the more classical question for the complex space forms $CP^n$ and $CH^n$. The proof relies heavily on the construction of $CP^3$ and $F_{1,2}$ as twistor spaces of $S^4$ and $CP^2$
We construct the normal forms of null-Kahler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified setting) appear in the Bridgeland stability conditions of the moduli spaces of Calabi-Yau three-folds. Using twistor methods we show that, in dimension four - where there is a connection with dispersionless integrability - the cohomogeneity-one anti-self-dual null-Kahler metrics are generically characterised by solutions to Painleve I or Painleve II ODEs.
We prove that a 2n-dimensional compact homogeneous nearly Kahler manifold with strictly positive sectional curvature is isometric to CP^{n}, equipped with the symmetric Fubini-Study metric or with the standard Sp(m)-homogeneous metric, n =2m-1, or to S^{6} as Riemannian manifold with constant sectional curvature. This is a positive answer for a revised version of a conjecture given by Gray.
We study the space of nearly K{a}hler structures on compact 6-dimensional manifolds. In particular, we prove that the space of infinitesimal deformations of a strictly nearly K{a}hler structure (with scalar curvature scal) modulo the group of diffeomorphisms, is isomorphic to the space of primitive co-closed (1,1)-eigenforms of the Laplace operator for the eigenvalue 2scal/5.
The moduli space NK of infinitesimal deformations of a nearly Kahler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1,1) forms. Using the Hermitian Laplace operator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kahler manifolds. It turns out that the nearly Kahler structure is rigid except for the flag manifold F(1,2)=SU_3/T^2, which carries an 8-dimensional moduli space of infinitesimal nearly Kahler deformations, modeled on the Lie algebra su_3 of the isometry group.