Do you want to publish a course? Click here

The Fractions of Inner- and Outer-Halo Stars in the Local Volume

116   0   0.0 ( 0 )
 Added by Deokkeun An
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain a new determination of the metallicity distribution function (MDF) of stars within $sim5$-$10$ kpc of the Sun, based on recently improved co-adds of $ugriz$ photometry for Stripe 82 from the Sloan Digital Sky Survey. Our new estimate uses the methodology developed previously by An et al. to study in situ halo stars, but is based on a factor of two larger sample than available before, with much-improved photometric errors and zero-points. The newly obtained MDF can be divided into multiple populations of halo stars, with peak metallicities at [Fe/H] $approx -1.4$ and $-1.9$, which we associate with the inner-halo and outer-halo populations of the Milky Way, respectively. We find that the kinematics of these stars (based on proper-motion measurements at high Galactic latitude) supports the proposed dichotomy of the halo, as stars with retrograde motions in the rest frame of the Galaxy are generally more metal-poor than stars with prograde motions, consistent with previous claims. In addition, we generate mock catalogs of stars from a simulated Milk Way halo system, and demonstrate for the first time that the chemically- and kinematically-distinct properties of the inner- and outer-halo populations are qualitatively in agreement with our observations. The decomposition of the observed MDF and our comparison with the mock catalog results suggest that the outer-halo population contributes on the order of $sim35%$-$55%$ of halo stars in the local volume.



rate research

Read More

138 - D. Carollo , T. C. Beers , J. Bovy 2011
(Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from the Sloan Digital Sky Survey (SDSS). Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios (carbonicity) in excess of [C/Fe]$ = +0.7$ are considered CEMP stars, the global frequency of CEMP stars in the halo system for feh $< -1.5$ is 8%; for feh $< -2.0$ it is 12%; for feh $<-2.5$ it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from $<$[C/Fe]$>$ $sim +1.0$ at feh $= -1.5$ to $<$[C/Fe]$>$ $sim +1.7$ at feh $= -2.7$. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, $|$Z$|$. For $|$Z$|$ $< 5$ kpc, relatively few CEMP stars are identified. For distances $|$Z$|$ $> 5$ kpc, the CarDF exhibits a strong tail towards high values, up to [C/Fe] $>$ +3.0. We also find a clear increase in the CEMP frequency with $|$Z$|$. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the frequency grows from 5% at $|$Z$|$ $sim 2$ kpc to 10% at $|$Z$|$ $sim 10$ kpc. For stars with [Fe/H] $< -$2.0, the frequency grows from 8% at $|$Z$|$ $sim 2$ kpc to 25% at $|$Z$|$ $sim 10$ kpc. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the mean carbonicity is $<$[C/Fe]$>$ $sim +1.0$ for 0 kpc $<$ $|$Z$|$ $<$ 10 kpc, with little dependence on $|$Z$|$; for [Fe/H] $< -$2.0, $<$[C/Fe]$>$ $sim +1.5$, again roughly independent of $|$Z$|$.
We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Galactic plane. High-resolution, high signal-to-noise spectra for the sample stars obtained with Subaru/HDS are used to derive chemical abundances of Na, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y and Ba with an LTE abundance analysis code. The resulting abundance data are combined with those presented in literature that mostly targeted at smaller Z_max stars, and both data are used to investigate any systematic trends in detailed abundance patterns depending on their kinematics. It is shown that, in the metallicity range of -2<[Fe/H]<-1, the [Mg/Fe] ratios for the stars with Z_max>5 kpc are systematically lower (~0.1 dex) than those with smaller Z_max. This result of the lower [alpha/Fe] for the assumed outer halo stars is consistent with previous studies that found a signature of lower [alpha/Fe] ratios for stars with extreme kinematics. A distribution of the [Mg/Fe] ratios for the outer halo stars partly overlaps with that for stars belonging to the Milky Way dwarf satellites in the metallicity interval of -2<[Fe/H]<-1 and spans a range intermediate between the distributions for the inner halo stars and the stars belonging to the satellites. Our results confirm inhomogeneous nature of chemical abundances within the Milky Way stellar halo depending on kinematic properties of constituent stars as suggested by earlier studies. Possible implications for the formation of the Milky Way halo and its relevance to the suggested dual nature of the halo are discussed.
We analyze the observed spatial, chemical and dynamical distributions of local metal-poor stars, based on photometrically derived metallicity and distance estimates along with proper motions from the Gaia mission. Along the Galactic prime meridian, we identify stellar populations with distinct properties in the metallicity versus rotational velocity space, including Gaia Sausage/Enceladus (GSE), the metal-weak thick disk (MWTD), and the Splash (sometimes referred to as the in situ halo). We model the observed phase-space distributions using Gaussian mixtures and refine their positions and fractional contributions as a function of distances from the Galactic plane ($|Z|$) and the Galactic center ($R_{rm GC}$), providing a global perspective of the major stellar populations in the local halo. Within the sample volume ($|Z|<6$ kpc), stars associated with GSE exhibit a larger proportion of metal-poor stars at greater $R_{rm GC}$ ($Delta langle{rm[Fe/H]}rangle /Delta R_{rm GC} =-0.05pm0.02$ dex kpc$^{-1}$). This observed trend, along with a mild anticorrelation of the mean rotational velocity with metallicity ($Delta langle v_phi rangle / Delta langle{rm[Fe/H]} rangle sim -10$ km s$^{-1}$ dex$^{-1}$), implies that more metal-rich stars in the inner region of the GSE progenitor were gradually stripped away, while the prograde orbit of the merger at infall became radialized by dynamical friction. The metal-rich GSE stars are causally disconnected from the Splash structure, whose stars are mostly found on prograde orbits ($>94%$) and exhibit a more centrally concentrated distribution than GSE. The MWTD exhibits a similar spatial distribution to the Splash, suggesting earlier dynamical heating of stars in the primordial disk of the Milky Way, possibly before the GSE merger.
We explore the vicinity of the Milky Way through the use of spectro-photometric data from the Sloan Digital Sky Survey and high-quality proper motions derived from multi-epoch positions extracted from the Guide Star Catalogue II database. In order to identify and characterise streams as relics of the Milky Way formation, we start with classifying, select, and study $2417$ subdwarfs with $rm{[Fe/H] < -1.5}$ up to $3$ kpc away from the Sun as tracers of the local halo system. Then, through phase-space analysis, we find statistical evidence of five discrete kinematic overdensities among $67$ of the fastest-moving stars, and compare them to high-resolution N-body simulations of the interaction between a Milky-Way like galaxy and orbiting dwarf galaxies with four representative cases of merging histories. The observed overdensities can be interpreted as fossil substructures consisting of streamers torn from their progenitors, such progenitors appear to be satellites on prograde and retrograde orbits on different inclinations. In particular, of the five detected overdensities, two appear to be associated, yelding twenty-one additional main-sequence members, with the stream of Helmi et al. (1999) that our analysis confirms on a high inclination prograde orbit. The three newly identified kinematic groups could be associated with the retrograde streams detected by Dinescu (2002) and Kepley et al. (2007), whatever their origin, the progenitor(s) would be on retrograde orbit(s) and inclination(s) within the range $10^{circ} div 60^{circ}$. Finally, we use our simulations to investigate the impact of observational errors and compare the current picture to the promising prospect of highly improved data expected from the Gaia mission.
We have obtained deep Hubble Space Telescope (HST) imaging of 19 dwarf galaxy candidates in the vicinity of M101. Advanced Camera for Surveys HST photometry for 2 of these objects showed resolved stellar populations and Tip of the Red Giant Branch derived distances consistent with M101 group membership. The other 17 were found to have no resolved stellar populations, meaning they are background low surface brightness (LSB) galaxies. It is notable that many LSB objects which had previously been assumed to be M101 group members based on projection have been shown to be background objects, indicating the need for future diffuse dwarf surveys to be careful in drawing conclusions about group membership without robust distance estimates. In this work we update the satellite luminosity function of M101 based on the presence of these new objects down to M_V=-8.2. M101 is a sparsely populated system with only 9 satellites down to M_V~-8, as compared to 26 for M31 and 24.5pm7.7 for the median local Milky Way (MW)-mass host. This makes M101 the sparsest group probed to this depth, though M94 is even sparser to the depth it has been examined (M_V=-9.1). M101 and M94 share several properties that mark them as unusual compared to the other local MW-mass galaxies examined: they have a sparse satellite population but also have high star forming fractions among these satellites; such properties are also found in the galaxies examined as part of the SAGA survey. We suggest that these properties appear to be tied to the galactic environment, with more isolated galaxies showing sparse satellite populations which are more likely to have had recent star formation, while those in dense environments have more satellites which tend to have no recent star formation. Overall our results show a level of halo-to-halo scatter between galaxies of similar mass that is larger than is predicted in the LambdaCDM model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا