No Arabic abstract
Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with Bohr model. Besides, based on the analysis of Bohr model, it is shown that contrary to the TM case, superscattering is hard to occur by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.
The energy-momentum dispersion relation is a fundamental property of plasmonic systems. In this paper, we show that the method of dispersion engineering can be used for the design of ultra-compact graphene-based superscatterers. Based on the Bohr model, the dispersion relation of the equivalent planar waveguide is engineered to enhance the scattering cross section of a dielectric cylinder. Bohr conditions with different orders are fulfilled in multiple dispersion curves at the same resonant frequency. Thus the resonance peaks from the first and second order scattering terms are overlapped in the deepsubwavelength scale by delicately tuning the gap thickness between two graphene layers. Using this ultra-compact graphene-based superscatterer, the scattering cross section of the dielectric cylinder can be enhanced by five orders of magnitude.
We experimentally demonstrate ultrathin flat lenses with a thickness of 7 {AA}, which corresponds to the fundamental physical limit of the thickness of the material, is fabricated in a large area, monolayer, CVD-prepared tungsten chalcogenides single crystals using the low-cost flexible laser writing method. The lenses apply the ultra-high refractive index to introduce abrupt amplitude modulation of the incident light to achieve three-dimensional (3D) focusing diffraction-limited resolution (0.5{lambda}) and a focusing efficiency as high as 31%. An analytical physical model based diffraction theory is derived to simulate the focusing process, which shows excellent agreement with the experimental results.
Van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p-g-n heterostructure formed by sandwiching graphene with a gapless bandstructure and wide absorption spectrum in an atomically thin p-n junction to overcome these major limitations. We have successfully demonstrated a MoS2-graphene-WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 1011 Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.
Recent research in two-dimensional (2D) materials has boosted a renovated interest in the p-n junction, one of the oldest electrical components which can be used in electronics and optoelectronics. 2D materials offer remarkable flexibility to design novel p-n junction device architectures, not possible with conventional bulk semiconductors. In this Review we thoroughly describe the different 2D p-n junction geometries studied so far, focusing on vertical (out-of-plane) and lateral (in-plane) 2D junctions and on mixed-dimensional junctions. We discuss the assembly methods developed to fabricate 2D p-n junctions making a distinction between top-down and bottom-up approaches. We also revise the literature studying the different applications of these atomically thin p-n junctions in electronic and optoelectronic devices. We discuss experiments on 2D p-n junctions used as current rectifiers, photodetectors, solar cells and light emitting devices. The important electronics and optoelectronics parameters of the discussed devices are listed in a table to facilitate their comparison. We conclude the Review with a critical discussion about the future outlook and challenges of this incipient research field.
The photonic spin Hall effect (SHE) can be regarded as a direct optical analogy of the SHE in electronic systems where a refractive index gradient plays the role of electric potential. However, it has been demonstrated that the effective refractive index fails to adequately explain the lightmatter interaction in atomically thin crystals. In this paper, we examine the spin-orbit interaction on the surface of the freestanding atomically thin crystals. We find that it is not necessary to involve the effective refractive index to describe the spin-orbit interaction and the photonic SHE in the atomically thin crystals. The strong spin-orbit interaction and giant photonic SHE have been predicted, which can be explained as the large polarization rotation of plane-wave components in order to satisfy the transversality of photon.