Do you want to publish a course? Click here

Magnetoresistance of heavy and light metal/ferromagnet bilayers

59   0   0.0 ( 0 )
 Added by Can Onur Avci
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the magnetoresistance of normal metal (NM)/ferromagnet (FM) bilayers in the linear and nonlinear (current-dependent) regimes and compared it with the amplitude of the spin-orbit torques and thermally induced electric fields. Our experiments reveal that the magnetoresistance of the heavy NM/Co bilayers (NM = Ta, W, Pt) is phenomenologically similar to the spin Hall magnetoresistance (SMR) of YIG/Pt, but has a much larger anisotropy, of the order of 0.5%, which increases with the atomic number of the NM. This SMR-like behavior is absent in light NM/Co bilayers (NM = Ti, Cu), which present the standard AMR expected of polycrystalline FM layers. In the Ta, W, Pt/Co bilayers we find an additional magnetoresistance, directly proportional to the current and to the transverse component of the magnetization. This so-called unidirectional SMR, of the order of 0.005%, is largest in W and correlates with the amplitude of the antidamping spin-orbit torque. The unidirectional SMR is below the accuracy of our measurements in YIG/Pt.



rate research

Read More

The electronic and optoelectronic properties of two dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS$_2$ or WSe$_2$)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emerged as a remarkable parameter that can control the period of lateral confinement, and nature of the exciton (Coulomb bound electron-hole pair) in reciprocal space thus creating exotic physical states including moire excitons. In this review article, we focus on opto-electronic properties of excitons in transition metal dichalcogenide (TMD) semiconductor twisted BL-HS. We look at existing evidence of moire excitons in localized and strongly correlated states, and at nanoscale mapping of moire superlattice and lattice-reconstruction. This review will be helpful in guiding the community as well as motivating work in areas such as near-field optical measurements and controlling the creation of novel physical states.
Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically-improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation -- the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling S-O torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.
The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$, at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles $theta<4^circ$, and identify a particular magic angle at which the top valence moire band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moire unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا