Do you want to publish a course? Click here

Magnetic phase diagram of La$_{2-x}$Sr$_{x}$CoO$_{4}$ revised using muon-spin relaxation

113   0   0.0 ( 0 )
 Added by Robert Williams Mr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of a muon-spin relaxation ($mu$SR) investigation of La$_{2-x}$Sr$_{x}$CoO$_{4}$, an antiferromagnetic insulating series which has been shown to support charge ordered and magnetic stripe phases and an hourglass magnetic excitation spectrum. We present a revised magnetic phase diagram, which shows that the suppression of the magnetic ordering temperature is highly sensitive to small concentrations of holes. Distinct behavior within an intermediate $x$ range ($0.2 leq x lesssim 0.6$) suggests that the putative stripe ordered phase extends to lower $x$ than previously thought. Further charge doping ($0.67 leq x leq 0.9$) prevents magnetic ordering for $T gtrsim 1.5~{rm K}$



rate research

Read More

70 - Z. W. Li , Y. Drees , A. Ricci 2016
The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation.
143 - Y. Drees , Z. W. Li , A. Ricci 2015
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
We present X-ray spectroscopic evidence for the evolution of valence-specific spin states and tetragonal distortions in single-layer cobaltates. Measurements of Co $L_3$-edge resonant inelastic X-ray scattering reveal the $t_{2g}$ electronic structure of Co for hole-doped La$_{2-x}$Sr$_x$CoO$_4$ ($x$ = 0.5, 0.7 and 0.8). As the Sr-doping $x$ increases, the tetragonal splitting of the $t_{2g}$ states of high-spin Co$^{2+}$ decreases, whereas that of low-spin Co$^{3+}$ increases and the fraction of high-spin Co$^{3+}$ increases. The results enable us to clarify the origin of the change of magnetic anisotropy and in-plane resistivity in a mixed-valence cobaltate caused by the interplay of spin-orbit coupling and tetragonal distortion.
We present results of magnetic neutron diffraction experiments on the co-doped super-oxygenated La(2-x)Sr(x)CuO(4+y) (LSCO+O) system with x=0.09. The spin-density wave has been studied and we find long-range incommensurate antiferromagnetic order below T_N coinciding with the superconducting ordering temperature T_c=40 K. The incommensurability value is consistent with a hole-doping of n_h~1/8, but in contrast to non-superoxygenated La(2-x)Sr(x)CuO(4) with hole-doping close to n_h ~ 1/8 the magnetic order parameter is not field-dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the other striped lanthanum-cuprate systems.
A detailed electronic phase diagram of perovskite-type oxides Sr$_{1-x}$La$_x$FeO$_3$ $(0leq x leq 0.5)$ was established by synchrotron X-ray diffraction, magnetization, and transport measurements for polycrystalline samples synthesized by a high-pressure technique. Among three kinds of helimagnetic phases in SrFeO$_3$ at zero field, two of them showing multiple-${it q}$ helimagnetic spin textures tend to rapidly disappear in cubic symmetry upon the La substitution with $x$ less than 0.1, which accompanies the loss of metallic nature. On the other hand, the third helimagnetic phase apparently remains robustly in Sr$_{1-x}$La$_x$FeO$_3$ with $x$ higher than 0.1, followed by merging to the spin/charge ordered phase with $xsim 1/3$. We propose an important role of itinerant ligand holes on the emergence of multiple-${it q}$ states and a possible link between the third (putative single-${it q}$) helimagnetic phase in SrFeO$_3$ and the spin/charge ordered phase in Sr$_{2/3}$La$_{1/3}$FeO$_3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا