Do you want to publish a course? Click here

Evolution of valence-specific spin states and local distortions in La$_{2-x}$Sr$_x$CoO$_4$

76   0   0.0 ( 0 )
 Added by Jun Okamoto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray spectroscopic evidence for the evolution of valence-specific spin states and tetragonal distortions in single-layer cobaltates. Measurements of Co $L_3$-edge resonant inelastic X-ray scattering reveal the $t_{2g}$ electronic structure of Co for hole-doped La$_{2-x}$Sr$_x$CoO$_4$ ($x$ = 0.5, 0.7 and 0.8). As the Sr-doping $x$ increases, the tetragonal splitting of the $t_{2g}$ states of high-spin Co$^{2+}$ decreases, whereas that of low-spin Co$^{3+}$ increases and the fraction of high-spin Co$^{3+}$ increases. The results enable us to clarify the origin of the change of magnetic anisotropy and in-plane resistivity in a mixed-valence cobaltate caused by the interplay of spin-orbit coupling and tetragonal distortion.



rate research

Read More

70 - Z. W. Li , Y. Drees , A. Ricci 2016
The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation.
163 - Y. Drees , Z. W. Li , A. Ricci 2015
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
Electronic structure has been studied in lightly electron doped correlated spin-orbit insulator Sr$_2$IrO$_4$ by angle-resolved photoelectron spectroscopy. We have observed coexistence of the lower Hubbard band and the in-gap band, the momentum dependence of the latter traces that of the band calculations without on-site Coulomb repulsion. The in-gap state remained anisotropically gapped in all observed momentum area, forming a remnant Fermi surface state, evolving towards the Fermi energy by carrier doping. These experimental results show a striking similarity with those observed in deeply underdoped cuprates, suggesting the common nature of the nodal liquid states observed in both compounds.
The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous.
We have studied the magnetic excitations of electron-doped Sr$_{2-x}$La$_x$IrO$_4$ ($0 leq x leq 0.10$) using resonant inelastic x-ray scattering (RIXS) at the Ir L$_3$-edge. The long range magnetic order is rapidly lost with increasing $x$, but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1/2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3/2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1/2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا