Do you want to publish a course? Click here

Semantic, Cognitive, and Perceptual Computing: Advances toward Computing for Human Experience

133   0   0.0 ( 0 )
 Added by Pramod Anantharam
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The World Wide Web continues to evolve and serve as the infrastructure for carrying massive amounts of multimodal and multisensory observations. These observations capture various situations pertinent to peoples needs and interests along with all their idiosyncrasies. To support human-centered computing that empower people in making better and timely decisions, we look towards computation that is inspired by human perception and cognition. Toward this goal, we discuss computing paradigms of semantic computing, cognitive computing, and an emerging aspect of computing, which we call perceptual computing. In our view, these offer a continuum to make the most out of vast, growing, and diverse data pertinent to human needs and interests. We propose details of perceptual computing characterized by interpretation and exploration operations comparable to the interleaving of bottom and top brain processing. This article consists of two parts. First we describe semantic computing, cognitive computing, and perceptual computing to lay out distinctions while acknowledging their complementary capabilities. We then provide a conceptual overview of the newest of these three paradigms--perceptual computing. For further insights, we focus on an application scenario of asthma management converting massive, heterogeneous and multimodal (big) data into actionable information or smart data.



rate research

Read More

472 - Marko A. Rodriguez 2010
This article presents a model of general-purpose computing on a semantic network substrate. The concepts presented are applicable to any semantic network representation. However, due to the standards and technological infrastructure devoted to the Semantic Web effort, this article is presented from this point of view. In the proposed model of computing, the application programming interface, the run-time program, and the state of the computing virtual machine are all represented in the Resource Description Framework (RDF). The implementation of the concepts presented provides a practical computing paradigm that leverages the highly-distributed and standardized representational-layer of the Semantic Web.
Along with the development of modern computing technology and social sciences, both theoretical research and practical applications of social computing have been continuously extended. In particular with the boom of artificial intelligence (AI), social computing is significantly influenced by AI. However, the conventional technologies of AI have drawbacks in dealing with more complicated and dynamic problems. Such deficiency can be rectified by hybrid human-artificial intelligence (H-AI) which integrates both human intelligence and AI into one unity, forming a new enhanced intelligence. H-AI in dealing with social problems shows the advantages that AI can not surpass. This paper firstly introduces the concept of H-AI. AI is the intelligence in the transition stage of H-AI, so the latest research progresses of AI in social computing are reviewed. Secondly, it summarizes typical challenges faced by AI in social computing, and makes it possible to introduce H-AI to solve these challenges. Finally, the paper proposes a holistic framework of social computing combining with H-AI, which consists of four layers: object layer, base layer, analysis layer, and application layer. It represents H-AI has significant advantages over AI in solving social problems.
104 - Subhash Kak 2008
Stream computing is the use of multiple autonomic and parallel modules together with integrative processors at a higher level of abstraction to embody intelligent processing. The biological basis of this computing is sketched and the matter of learning is examined.
53 - Luis A. Pineda 2019
The Turing Machine is the paradigmatic case of computing machines, but there are others such as Artificial Neural Networks, quantum computing, holography, and diverse forms of analogical computing, each based on a particular intuition of the phenomenon of computing. This variety can be captured in terms of system levels, re-interpreting and generalizing Newells hierarchy, which includes the knowledge level at the top and the symbol level immediately below it. In this re-interpretation the knowledge level consists of human knowledge and the symbol level is generalized into a new level that here is called The Mode of Computing. Natural computing performed by brains of humans and non-human animals with a developed enough neural system should be understood in terms of a hierarchy of system levels too. By analogy from standard computing machinery there must be a system level above the neural circuitry and directly below the knowledge level that is named here The mode of Natural Computing. A central question for Cognition is the characterization of this mode. The Mode of Computing provides a novel perspective on the phenomena of computing, interpreting, the representational and non-representational views of cognition, and consciousness.
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method such as linear regression and classification. Thus, the major advantage of reservoir computing compared to other recurrent neural networks is fast learning, resulting in low training cost. Another advantage is that the reservoir without adaptive updating is amenable to hardware implementation using a variety of physical systems, substrates, and devices. In fact, such physical reservoir computing has attracted increasing attention in diverse fields of research. The purpose of this review is to provide an overview of recent advances in physical reservoir computing by classifying them according to the type of the reservoir. We discuss the current issues and perspectives related to physical reservoir computing, in order to further expand its practical applications and develop next-generation machine learning systems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا