Do you want to publish a course? Click here

The PNe and H II regions in NGC 6822 revisited. Clues to AGB nucleosynthesis

57   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) The chemical behaviour of an ample sample of PNe in NGC6822 is analyzed. Spectrophotometric data of 11 PNe and two H II regions were obtained with the OSIRIS spectrograph attached to the Gran Telescopio Canarias. Data for other 13 PNe and three H II regions were retrieved from the literature. Physical conditions and chemical abundances of O, N, Ne, Ar and S were derived for 19 PNe and 4 H II regions. Abundances in the PNe sample are widely distributed showing 12+log(O/H) from 7.4 to 8.2 and 12+log(Ar/H) from 4.97 to 5.80. Two groups of PNe can be differentiated: one old, with low metallicity (12+log(O/H)<8.0 and 12+log(Ar/H)<5.7) and another younger with metallicities similar to the values of H II regions. The old objects are distributed in a larger volume than the young ones. An important fraction of PNe (>30%) was found to be highly N-rich (Type I PNe). Such PNe occur at any metallicity. In addition, about 60% of the sample presents high ionization (He++/He >= 0.1), possessing a central star with effective temperature larger than 10^6 K. Possible biases in the sample are discussed. From comparison with stellar evolution models by A. Karakass group of the observed N/O abundance ratios, our PNe should have had initial masses lower than 4 M_sun, although if the comparison is made with Ne vs. O abundances, the initial masses should have been lower than 2 M_sun. It appears that these models of stars of 2-3 M_sun are producing too much 22Ne in the stellar surface at the end of the AGB. On the other hand, the comparison with another set of stellar evolution models by P. Venturas group with a different treatment of convection and on the assumptions concerning the overshoot of the convective core during the core H-burning phase, provided a reasonable agreement between N/O and Ne/H observed and predicted ratios if initial masses of more massive stars are of about 4 M_sun.



rate research

Read More

Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne$^{++}$, Ne$^+$) and sulphur (S$^{3+}$, S$^{++}$), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne$^+$/Ne$^{++}$ and S$^{3+}$/S$^{++}$. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2$pm$0.8). This value is in contrast to Asplund et al.s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.
111 - F. Annibali 2017
We present deep 3500$-$10000 $AA$ spectra of H II regions and planetary nebulae (PNe) in the starburst irregular galaxy NGC 4449, acquired with the Multi Object Double Spectrograph at the Large Binocular Telescope. Using the direct method, we derived the abundance of He, N, O, Ne, Ar, and S in six H II regions and in four PNe in NGC 4449. This is the first case of PNe studied in a starburst irregular outside the Local Group. Our H II region and PN sample extends over a galacto-centric distance range of $approx$2 kpc and spans $approx$0.2 dex in oxygen abundance, with average values of $12+log(O/H)=8.37 pm 0.05$ and $8.3 pm 0.1$ for H II regions and PNe, respectively. PNe and H II regions exhibit similar oxygen abundances in the galacto-centric distance range of overlap, while PNe appear more than $sim$1 dex enhanced in nitrogen with respect to H II regions. The latter result is the natural consequence of N being mostly synthesized in intermediate-mass stars and brought to the stellar surface during dredge-up episodes. On the other hand, the similarity in O abundance between H II regions and PNe suggests that NGC 4449 s interstellar medium has been poorly enriched in $alpha$ elements since the progenitors of the PNe were formed. Finally, our data reveal the presence of a negative oxygen gradient for both H II regions and PNe, whilst nitrogen does not exhibit any significant radial trend. We ascribe the (unexpected) nitrogen behaviour as due to local N enrichment by the conspicuous Wolf-Rayet population in NGC 4449.
Recent estimates of the Cepheid distance modulus of NGC 6822 differ by 0.18 mag. To investigate this we present new multi-epoch JHKs photometry of classical Cepheids in the central region of NGC 6822 and show that there is a zero-point difference from earlier work. These data together with optical and mid-infrared observations from the literature are used to derive estimates of the distance modulus of NGC 6822. A best value of 23.40 mag is adopted, based on an LMC distance modulus of 18.50 mag. The standard error of this quantity is ~0.05 mag. We show that to derive consistent moduli from Cepheid observations at different wavelengths, it is necessary that the fiducial LMC period-luminosity relations at these wavelengths should refer to the same subsample of stars. Such a set is provided. A distance modulus based on RR Lyrae variables agrees with the Cepheid result.
We present a tutorial on the determination of the physical conditions and chemical abundances in gaseous nebulae. We also include a brief review of recent results on the study of gaseous nebulae, their relevance for the study of stellar evolution, galactic chemical evolution, and the evolution of the universe. One of the most important problems in abundance determinations is the existence of a discrepancy between the abundances determined with collisionally excited lines and those determined by recombination lines, this is called the ADF (abundance discrepancy factor) problem; we review results related to this problem. Finally, we discuss possible reasons for the large t$^2$ values observed in gaseous nebulae.
Context: The Asymptotic Giant Branch (AGB) phase is characterised by substantial mass loss that is accompanied by the formation of dust. In extreme cases this will make the star no longer visible in the optical. For a better understanding of AGB evolution it is important to identify and characterise these very red AGB stars. Aims: The first aim of this article is to improve the census of red AGB stars in three Local Group galaxies, based on near-IR spectroscopic observations of new candidates with red 2MASS (J-K) colours. The opportunity is taken to compare the near-IR spectra with those of Milky Way stars. Methods: We used ISAAC on the ESO VLT to take J and H-band spectra of 36 targets in Fornax, Sculptor and NGC 6822. Results: Twelve new C-stars are found in Fornax, and one is confirmed in Sculptor. All C-stars have (J-K) > 1.6, and are brighter than -3.55 in bolometric magnitude. Ten new oxygen-rich late-type giant stars are identified in Fornax, but none is extremely red or very luminous. Five luminous O-rich AGB stars are identified in NGC 6822, of which 3 show water absorption, indicative of spectral type M. Again, none is as red as Milky Way OH/IR stars, but in this galaxy the list of candidate AGB stars is biased against very red objects. In some C-stars with (J-K)>2 an extremely strong 1.53 $mu$m absorption band is found. These stars are probably all Mira variables and the feature is related to the low temperature, high density chemistry that is a first step towards dust formation and mass loss.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا