Do you want to publish a course? Click here

Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses

144   0   0.0 ( 0 )
 Added by Hironobu Fukuzawa
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated multiphoton multiple ionization dynamics of argon and xenon atoms using a new x-ray free electron laser (XFEL) facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that highly charged Xe ions with the charge state up to +26 are produced predominantly via four-photon absorption as well as highly charged Ar ions with the charge state up to +10 are produced via two-photon absorption at a photon energy of 5.5 keV. The absolute fluence of the XFEL pulse, needed for comparison between theory and experiment, has been determined using two-photon processes in the argon atom with the help of benchmark ab initio calculations. Our experimental results, in combination with a newly developed theoretical model for heavy atoms, demonstrate the occurrence of multiphoton absorption involving deep inner shells.



rate research

Read More

121 - L. Fang , T. Osipov , B. Murphy 2013
We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short X-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval between the photoabsorption events. Using multiphoton ionization as a tool of multiple-pulse pump-probe scheme, we demonstrate the modification of the ionization dynamics as we vary the x-ray laser pulse duration.
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
Multiphoton ionization of sodium by femtosecond laser pulses of 800 nm wavelength in the range of laser peak intensities entering over-the-barrier ionization domain is studied. Photoelectron momentum distributions and the energy spectra are determined numerically by solving the time dependent Schroedinger equation for three values of the laser intensity from this domain. The calculated spectra agree well with the spectra obtained experimentally by Hart et al (Phys. Rev. A 2016 93 063426). A partial wave analysis of the spectral peaks related to Freeman resonances has shown that each peak is a superposition of the contributions of photoelectrons produced by the resonantly enhanced multiphoton ionization via different intermediate states. It is demonstrated that at specific laser intensities the selective ionization, which occurs predominantly through a single intermediate state, is possible.
Phase-shift differences and amplitude ratios of the outgoing $s$ and $d$ continuum wave packets generated by two-photon ionization of helium atoms are determined from the photoelectron angular distributions obtained using velocity map imaging. Helium atoms are ionized with ultrashort extreme-ultraviolet free-electron laser pulses with a photon energy of 20.3, 21.3, 23.0, and 24.3 eV, produced by the SPring-8 Compact SASE Source test accelerator. The measured values of the phase-shift differences are distinct from scattering phase-shift differences when the photon energy is tuned to an excited level or Rydberg manifold. The difference stems from the competition between resonant and non-resonant paths in two-photon ionization by ultrashort pulses. Since the competition can be controlled in principle by the pulse shape, the present results illustrate a new way to tailor the continuum wave packet.
Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {it ab initio}, nonperturbative, approach to the time-dependent Schroedinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {it et al} [J. Phys. B {bf 41} (2008) 121002] and Morales {it et al} [J. Phys. B {bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا