Do you want to publish a course? Click here

Piecewise constructions of inverses of cyclotomic mapping permutation polynomials

82   0   0.0 ( 0 )
 Added by Yanbin Zheng
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Given a permutation polynomial of a large finite field, finding its inverse is usually a hard problem. Based on a piecewise interpolation formula, we construct the inverses of cyclotomic mapping permutation polynomials of arbitrary finite fields.



rate research

Read More

172 - Xiaogang Liu 2019
Permutation polynomials over finite fields have important applications in many areas of science and engineering such as coding theory, cryptography, combinatorial design, etc. In this paper, we construct several new classes of permutation polynomials, and the necessities of some permutation polynomials are studied.
177 - Ziran Tu , Xiangyong Zeng , Lei Hu 2013
In this note, a criterion for a class of binomials to be permutation polynomials is proposed. As a consequence, many classes of binomial permutation polynomials and monomial complete permutation polynomials are obtained. The exponents in these monomials are of Niho type.
Four recursive constructions of permutation polynomials over $gf(q^2)$ with those over $gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $gf(q^{2^ell})$ for any positive integer $ell$ with any given permutation polynomial over $gf(q)$. A generic construction of permutation polynomials over $gf(2^{2m})$ with o-polynomials over $gf(2^m)$ is also presented, and a number of new classes of permutation polynomials over $gf(2^{2m})$ are obtained.
In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these complete permutation polynomials are also proposed.
Permutation polynomials (PPs) of the form $(x^{q} -x + c)^{frac{q^2 -1}{3}+1} +x$ over $mathbb{F}_{q^2}$ were presented by Li, Helleseth and Tang [Finite Fields Appl. 22 (2013) 16--23]. More recently, we have constructed PPs of the form $(x^{q} +bx + c)^{frac{q^2 -1}{d}+1} -bx$ over $mathbb{F}_{q^2}$, where $d=2, 3, 4, 6$ [Finite Fields Appl. 35 (2015) 215--230]. In this paper we concentrate our efforts on the PPs of more general form [ f(x)=(ax^{q} +bx +c)^r phi((ax^{q} +bx +c)^{(q^2 -1)/d}) +ux^{q} +vx~~text{over $mathbb{F}_{q^2}$}, ] where $a,b,c,u,v in mathbb{F}_{q^2}$, $r in mathbb{Z}^{+}$, $phi(x)in mathbb{F}_{q^2}[x]$ and $d$ is an arbitrary positive divisor of $q^2-1$. The key step is the construction of a commutative diagram with specific properties, which is the basis of the Akbary--Ghioca--Wang (AGW) criterion. By employing the AGW criterion two times, we reduce the problem of determining whether $f(x)$ permutes $mathbb{F}_{q^2}$ to that of verifying whether two more polynomials permute two subsets of $mathbb{F}_{q^2}$. As a consequence, we find a series of simple conditions for $f(x)$ to be a PP of $mathbb{F}_{q^2}$. These results unify and generalize some known classes of PPs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا