Do you want to publish a course? Click here

Complete permutation polynomials over finite fields of odd characteristic

174   0   0.0 ( 0 )
 Added by Xiwang Cao
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these complete permutation polynomials are also proposed.



rate research

Read More

231 - Lucas Reis , Qiang Wang 2021
In this paper we introduce the additive analogue of the index of a polynomial over finite fields. We study several problems in the theory of polynomials over finite fields in terms of their additive indices, such as value set sizes, bounds on multiplicative character sums, and characterizations of permutation polynomials.
Let $(R, mathfrak{m})$ be a complete discrete valuation ring with the finite residue field $R/mathfrak{m} = mathbb{F}_{q}$. Given a monic polynomial $P(t) in R[t]$ whose reduction modulo $mathfrak{m}$ gives an irreducible polynomial $bar{P}(t) in mathbb{F}_{q}[t]$, we initiate the investigation of the distribution of $mathrm{coker}(P(A))$, where $A in mathrm{Mat}_{n}(R)$ is randomly chosen with respect to the Haar probability measure on the additive group $mathrm{Mat}_{n}(R)$ of $n times n$ $R$-matrices. One of our main results generalizes two results of Friedman and Washington. Our other results are related to the distribution of the $bar{P}$-part of a random matrix $bar{A} in mathrm{Mat}_{n}(mathbb{F}_{q})$ with respect to the uniform distribution, and one of them generalizes a result of Fulman. We heuristically relate our results to a celebrated conjecture of Cohen and Lenstra, which predicts that given an odd prime $p$, any finite abelian $p$-group (i.e., $mathbb{Z}_{p}$-module) $H$ occurs as the $p$-part of the class group of a random imaginary quadratic field extension of $mathbb{Q}$ with a probability inversely proportional to $|mathrm{Aut}_{mathbb{Z}}(H)|$. We review three different heuristics for the conjecture of Cohen and Lenstra, and they are all related to special cases of our main conjecture, which we prove as our main theorems. For proofs, we use some concrete combinatorial connections between $mathrm{Mat}_{n}(R)$ and $mathrm{Mat}_{n}(mathbb{F}_{q})$ to translate our problems about a Haar-random matrix in $mathrm{Mat}_{n}(R)$ into problems about a random matrix in $mathrm{Mat}_{n}(mathbb{F}_{q})$ with respect to the uniform distribution.
259 - Xiaogang Liu 2019
Let $mathbb{F}_q$ denote the finite fields with $q$ elements. The permutation behavior of several classes of infinite families of permutation polynomials over finite fields have been studied in recent years. In this paper, we continue with their studies, and get some further results about the permutation properties of the permutation polynomials. Also, some new classes of permutation polynomials are constructed. For these, we alter the coefficients, exponents or the underlying fields, etc.
95 - Bjorn Poonen 2017
In 2005, Kayal suggested that Schoofs algorithm for counting points on elliptic curves over finite fields might yield an approach to factor polynomials over finite fields in deterministic polynomial time. We present an exposition of his idea and then explain details of a generalization involving Pilas algorithm for abelian varieties.
In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been reported. For odd prime power $q$ with $q$ square, the total number of lengths for MDS self-dual codes over $mathbb{F}_q$ presented in this paper is much more than those in all the previous results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا