Do you want to publish a course? Click here

The long X-ray tail in Zwicky 8338

84   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction processes in galaxy clusters between the hot ionized gas (ICM) and the member galaxies are of crucial importance in order to understand the dynamics in galaxy clusters, the chemical enrichment processes and the validity of their hydrostatic mass estimates. Recently, several X-ray tails associated to gas which was partly stripped of galaxies have been discovered. Here we report on the X-ray tail in the 3 keV galaxy cluster Zwicky 8338, which might be the longest ever observed. We derive the properties of the galaxy cluster environment and give hints on the substructure present in this X-ray tail, which is very likely associated to the galaxy CGCG254-021. The X-ray tail is extraordinarily luminous ($2times10^{42}$ erg/s), the thermal emission has a temperature of 0.8 keV and the X-ray luminous gas might be stripped off completely from the galaxy. From the assumptions on the 3D geometry we estimate the gas mass fraction (< 0.1%) and conclude that the gas has been compressed and/or heated.

rate research

Read More

Galaxy clusters grow primarily through the continuous accretion of group-scale haloes. Group galaxies experience preprocessing during their journey into clusters. A star-bursting compact group, the Blue Infalling Group (BIG), is plunging into the nearby cluster A1367. Previous optical observations reveal rich tidal features in the BIG members, and a long H$alpha$ trail behind. Here we report the discovery of a projected $sim 250$ kpc X-ray tail behind the BIG using Chandra and XMM-Newton observations. The total hot gas mass in the tail is $sim 7times 10^{10} {rm M}_odot$ with an X-ray bolometric luminosity of $sim 3.8times 10^{41}$ erg s$^{-1}$. The temperature along the tail is $sim 1$ keV, but the apparent metallicity is very low, an indication of the multi-$T$ nature of the gas. The X-ray and H$alpha$ surface brightnesses in the front part of the BIG tail follow the tight correlation established from a sample of stripped tails in nearby clusters, which suggests the multiphase gas originates from the mixing of the stripped interstellar medium (ISM) with the hot intracluster medium (ICM). Because thermal conduction and hydrodynamic instabilities are significantly suppressed, the stripped ISM can be long lived and produce ICM clumps. The BIG provides us a rare laboratory to study galaxy transformation and preprocessing.
We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined and a method is developed to combine a large number of dwells with appropriate error propagation to derive long duration flux measurements (greater than 10 days). We also provide a general prescription to estimate the errors in variability derived from rms values from unequally spaced data. Though the derived variability for individual sources are not of very high significance, we find that, in general, the soft X-ray variability is higher than those in hard X-rays and the variability strengths decrease with energy for the diverse classes of AGN. We also examine the strength of variability as a function of the break time scale in the power density spectrum (derived from the estimated mass and bolometric luminosity of the sources) and find that the data are consistent with the idea of higher variability at time scales longer than the break time scale.
We present a study of the relation between X-rays and ultraviolet emission in quasars for a sample of broad-line, radio-quiet objects obtained from the cross-match of the Sloan Digital Sky Survey DR14 with the latest Chandra Source Catalog 2.0 (2,332 quasars) and the Chandra COSMOS Legacy survey (273 quasars). The non-linear relation between the ultraviolet (at 2500 A, $L_{O}$) and the X-ray (at 2 keV, $L_{X}$) emission in quasars has been proved to be characterised by a smaller intrinsic dispersion than the observed one, as long as a homogeneous selection, aimed at preventing the inclusion of contaminants in the sample, is fulfilled. By leveraging on the low background of Chandra, we performed a complete spectral analysis of all the data available for the SDSS-CSC2.0 quasar sample (i.e. 3,430 X-ray observations), with the main goal of reducing the uncertainties on the source properties (e.g. flux, spectral slope). We analysed whether any evolution of the $L_{X}-L_{O}$ relation exists by dividing the sample in narrow redshift intervals across the redshift range spanned by our sample, $z simeq 0.5-4$. We find that the slope of the relation does not evolve with redshift and it is consistent with the literature value of $0.6$ over the explored redshift range, implying that the mechanism underlying the coupling of the accretion disc and hot corona is the same at the different cosmic epochs. We also find that the dispersion decreases when examining the highest redshifts, where only pointed observations are available. These results further confirm that quasars are `standardisable candles, that is we can reliably measure cosmological distances at high redshifts where very few cosmological probes are available.
Using data from the DEEP2 galaxy redshift survey and the All Wavelength Extended Groth Strip International Survey we obtain stacked X-ray maps of galaxies at 0.7 < z < 1.0 as a function of stellar mass. We compute the total X-ray counts of these galaxies and show that in the soft band (0.5--2,kev) there exists a significant correlation between galaxy X-ray counts and stellar mass at these redshifts. The best-fit relation between X-ray counts and stellar mass can be characterized by a power law with a slope of 0.58 +/- 0.1. We do not find any correlation between stellar mass and X-ray luminosities in the hard (2--7,kev) and ultra-hard (4--7,kev) bands. The derived hardness ratios of our galaxies suggest that the X-ray emission is degenerate between two spectral models, namely point-like power-law emission and extended plasma emission in the interstellar medium. This is similar to what has been observed in low redshift galaxies. Using a simple spectral model where half of the emission comes from power-law sources and the other half from the extended hot halo we derive the X-ray luminosities of our galaxies. The soft X-ray luminosities of our galaxies lie in the range 10^39-8x10^40, ergs/s. Dividing our galaxy sample by the criteria U-B > 1, we find no evidence that our results for X-ray scaling relations depend on optical color.
We carry out a comprehensive Bayesian correlation analysis between hot halos and direct masses of supermassive black holes (SMBHs), by retrieving the X-ray plasma properties (temperature, luminosity, density, pressure, masses) over galactic to cluster scales for 85 diverse systems. We find new key scalings, with the tightest relation being the $M_bullet-T_{rm x}$, followed by $M_bullet-L_{rm x}$. The tighter scatter (down to 0.2 dex) and stronger correlation coefficient of all the X-ray halo scalings compared with the optical counterparts (as the $M_bullet-sigma_{rm e}$) suggest that plasma halos play a more central role than stars in tracing and growing SMBHs (especially those that are ultramassive). Moreover, $M_bullet$ correlates better with the gas mass than dark matter mass. We show the important role of the environment, morphology, and relic galaxies/coronae, as well as the main departures from virialization/self-similarity via the optical/X-ray fundamental planes. We test the three major channels for SMBH growth: hot/Bondi-like models have inconsistent anti-correlation with X-ray halos and too low feeding; cosmological simulations find SMBH mergers as sub-dominant over most of the cosmic time and too rare to induce a central-limit-theorem effect; the scalings are consistent with chaotic cold accretion (CCA), the rain of matter condensing out of the turbulent X-ray halos that sustains a long-term self-regulated feedback loop. The new correlations are major observational constraints for models of SMBH feeding/feedback in galaxies, groups, and clusters (e.g., to test cosmological hydrodynamical simulations), and enable the study of SMBHs not only through X-rays, but also via the Sunyaev-Zeldovich effect (Compton parameter), lensing (total masses), and cosmology (gas fractions).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا